[Leetcode]Unique Paths II

Follow up for "Unique Paths":

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

For example,

There is one obstacle in the middle of a 3x3 grid as illustrated below.

[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]

The total number of unique paths is 2.

Unique Paths的扩展题,只不过这题增加了障碍物,还是用动态规划,初始化第一行和第一列时遇到障碍物就停止, 因为障碍物之后的位置肯定到达不了;递推公式是如果grid[i][j]没有障碍物, dp[i][j] = dp[i-1][j] + dp[i][j-1], 如果grid[i][j]有障碍物, dp[i][j] = 0~

class Solution:
    # @param obstacleGrid, a list of lists of integers
    # @return an integer
    def uniquePathsWithObstacles(self, obstacleGrid):
        if obstacleGrid is None or len(obstacleGrid) == 0 or len(obstacleGrid[0]) == 0: return 0
        lenRow, lenCol = len(obstacleGrid), len(obstacleGrid[0])
        dp = [[0 for j in xrange(lenCol)] for i in xrange(lenRow)]
        for i in xrange(lenRow):
            if obstacleGrid[i][0] == 1:
                break
            dp[i][0] = 1
        for j in xrange(lenCol):
            if obstacleGrid[0][j] == 1:
                break
            dp[0][j] = 1
        for i in xrange(1, lenRow):
            for j in xrange(1, lenCol):
                dp[i][j] = 0 if obstacleGrid[i][j] == 1 else dp[i - 1][j] + dp[i][j - 1]
        return dp[lenRow - 1][lenCol - 1]

还有一维动态规划的解法,代码如下~

class Solution:
    # @param obstacleGrid, a list of lists of integers
    # @return an integer
    def uniquePathsWithObstacles(self, obstacleGrid):
        if obstacleGrid is None or len(obstacleGrid) == 0 or len(obstacleGrid[0]) == 0: return 0
        lenRow, lenCol = len(obstacleGrid), len(obstacleGrid[0])
        dp = [0 for i in xrange(lenCol)]
        dp[0] = 1
        for i in xrange(lenRow):
            for j in xrange(lenCol):
                if obstacleGrid[i][j] == 1:
                    dp[j] = 0
                else:
                    if j > 0:
                        dp[j] += dp[j - 1]
        return dp[lenCol - 1]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值