LeetCode399 除法求值(floyd)

1 篇文章 0 订阅
这篇博客探讨了Floyd-Warshall算法如何用于解决图中任意两点间最短路径的问题,以及在处理乘法关系的计算中进行优化。通过动态规划的方法,算法在O(n^3)的时间复杂度内计算所有可能的路径。文中还介绍了两种实现方式,一种是直接使用Floyd-Warshall算法进行修改,另一种是采用邻接表和深度优先搜索(DFS)。同时,代码示例展示了这两种方法的细节,包括图的构建和查询处理。
摘要由CSDN通过智能技术生成

在这里插入图片描述
Floyd-Warshall算法: O ( ∣ V ∣ 3 ) O(|V|^3) O(V3) 内计算任意两点的最短路。(dp的思想)
计算点 ij 的最短路,考虑最短路是否会经过点 k 。有两种情况:

  • 经过点 kd[i][j] = d[i][k] + d[k][j]
  • 不经过 kd[i][j]

则最短路的状态转移方程:d[i][j] = min(d[i][j], d[i][k] + d[k][j])
使用三个 for 循环,完成计算(从外到内分别处理 k、i、j

for(int k = 0; k < N; i++){
	for(int i = 0; i < N; i++) {
		for(int j = 0; j < N; j++) {
			d[i][j] = min(d[i][j], d[i][k] + d[k][j])
		}
	}
}

在本题中,使用 Floyd 算法需要做一些小改进

  • dp[i][i] 初始化为1
  • 状态转移方程变为乘法 dp[i][j] = min(dp[i][j], dp[i][k]*dp[k][j])
  • 不能到达的点始终维持 INT_MAX,不能相乘

附上代码:

Floyd算法

class Solution {
public:
    vector<double> calcEquation(vector<vector<string>>& equations, vector<double>& values, vector<vector<string>>& queries) {
        vector<double> out;
        map<string, int> proj;
        int cnt = 0;
        for(auto x : equations){
            if(proj.count(x[0]) == 0) proj[x[0]] = cnt++;
            if(proj.count(x[1]) == 0) proj[x[1]] = cnt++;
        }
        vector<vector<double>> graph(cnt, vector<double>(cnt, INT_MAX));
        for(int i = 0; i<cnt; i++) graph[i][i] = 1;
        for(int i=0; i<equations.size(); i++){
            int A = proj[equations[i][0]], B = proj[equations[i][1]];
            graph[A][B] = values[i];
            graph[B][A] = 1/values[i];
        }

        for(int k=0; k<cnt; k++){
            for(int i=0; i<cnt; i++){
                for(int j=0; j<cnt; j++){
                    if(graph[i][k] == INT_MAX || graph[k][j] == INT_MAX) continue;
                    graph[i][j] = min(graph[i][j], graph[i][k]*graph[k][j]);
                }
            }
        }
     
        for(auto x : queries){
            if(proj.count(x[0]) == 0 || proj.count(x[1]) == 0) out.push_back(-1.0);
            else {
                int A = proj[x[0]], B = proj[x[1]];
                if(graph[A][B] >= INT_MAX) out.push_back(-1.0);
                else out.push_back(graph[A][B]);
            }
        }
        return out;
    }
};

存图(邻接表) + dfs(查询)

typedef pair<int,double> P;
class Solution {
public:
    double dfs(vector<vector<P>>& g, int curr, int dest, set<int>& select){
        if(curr == dest) return 1.0;
        for(auto x : g[curr]){
            if(select.count(x.first) != 0) continue;
            select.insert(x.first);
            double cnt = dfs(g, x.first, dest, select);
            if(cnt > 0) return x.second*cnt;
            select.erase(select.find(x.first));
        }
        return -1;
    }

    vector<double> calcEquation(vector<vector<string>>& equations, vector<double>& values, vector<vector<string>>& queries) {
        vector<double> out;
        map<string, int> proj;
        int cnt = 0;
        for(auto x : equations) {
            if(proj.count(x[0]) == 0) proj[x[0]] = cnt++; 
            if(proj.count(x[1]) == 0) proj[x[1]] = cnt++;
        }
        // 构建图,存储每一条加权有向边
        vector<vector<P>> graph(proj.size(), vector<P>());
        for(int i=0; i<equations.size(); i++){
            int A = proj[equations[i][0]], B = proj[equations[i][1]];
            graph[A].push_back(P(B, values[i]));
            graph[B].push_back(P(A, 1.0/values[i]));
        }
        // 对每个查询query,dfs 查找路径对应的权值乘积
        for(auto x : queries){
            if(proj.count(x[0]) == 0 || proj.count(x[1]) == 0) {out.push_back(-1.0); continue;}
            int A = proj[x[0]], B = proj[x[1]];
            set<int> ss;
            ss.insert(A);
            out.push_back(dfs(graph, A, B, ss));
        }
        return out;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值