幸运地水了个国一,应该是对了3个结果填空,2+0.5+0.5个编程大题。
此次国赛共有十个题:
A~E 五个结果填空,F~J 五个编程大题。
目前并未找到标准答案,个人解法可能并不完全正确或最优,不对的还请指正!
A-平方序列:
小明想找到两个正整数X和Y,满足
1、2019<X<Y
2、20192、X2、Y2构成等差数列
请你求出在所有可能的解中,X+Y的最小值是多少?
核心思想:
一重循环。
从2020开始遍历X的值,对于每一个X的值,利用等差数列的条件求出Y2的值,只需要判断开方得到的Y是不是整数即可。(可以将Y再次平方,看数值是否发生变化)
代码如下:
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int t=2019*2019;
for(int x=2020;;x++)
{
int x2=x*x;
int y2=2*x2-t;
int y=sqrt(y2);
if(y*y==y2)
{
cout<<x+y<<endl;
break;
}
}
return 0;
}
答案:
7020
B-质数拆分:
将2019拆分为若干个两两不同的质数之和,一共有多少种不同的方法?注意交换顺序视为同一种方法,例如2 + 2017 = 2019与2017 + 2 = 2019视为同一种方法。
核心思想:
先用欧拉线性筛法将素数筛出来,存在pre数组中。
dp[i][pre[j]]表示满足下列额外条件的分解方案数:
1、被分解数为i
2、分解出的素数最大值恰好为pre[j]
状态转移方程:
for(int k=0;k<j&&pre[k]<=i-pre[j];k++)
dp[i][pre[j]]+=dp[i-pre[j]][pre[k]];
代码如下:
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e4+20;
const int M=2019;
int pre[N],cnt;
bool vis[N];
ll dp[N][N];
void xss()
{
for(int i=2;i<N-10;i++)
{
if(!vis[i])
pre[cnt++]=i;
for(int j=0;j<cnt&&i*pre[j]<N-5;j++)
{
vis[i*pre[j]]=1;
if(i%pre[j]==0)break;
}
}
return;
}
int main()
{
xss();
for(int i=0;pre[i]<=M;i++)
dp[pre[i]][pre[i]]=1;
for(int i=2;i<=M;i++)
{
for(int j=0;pre[j]<=i;j++)
{
for(int k=0;k<j&&pre[k]<=i-pre[j];k++)
dp[i][pre[j]]+=dp[i-pre[j]][pre[k]];
}
}
ll ans=0;
for(int i=0;pre[i]<=M;i++)
ans+=dp[M][pre[i]];
cout<<ans<<endl;
return 0;
}
答案:
55965365465060
C-拼接:
小明要把一根木头切成两段,然后拼接成一个直角。如下图所示,他把中间部分分成了nXn的小正方形,他标记了每个小正方形属于左边还是右边。然后沿两边的分界线将木头切断,将右边旋转向上后拼接在一起。
要求每个小正方形都正好属于左边或右边,而且同一边的必须是连通的。在拼接时,拼接的部位必须保持在原来大正方形里面。请问,对于7的小正方形,有多少种合法的划分小正方形的方式。
题解待更新……
D-求值:
学习了约数后,小明对于约数很好奇,他发现,给定一个正整数t,总是可以找到含有t个约数的整数。小明对于含有t个约数的最小数非常感兴趣,并把它定义为St。例如S1= 1,S2= 2,S3= 4,S4= 6,。现在小明想知道,当t= 100时,St是多少?即S100是多少?
核心思想:
两重for循环暴力。
代码如下:
#