Luogu P1090
【解题思路】
刚看到这题的时候,第一反应就是每次取两个最小,然后重新排序,再取最小。但是这样会TLE。
既然找最小的,那就可以利用单调队列了。显然输入的数据是不具有单调性的,但是可以排一次序,使之具有单调性。
这题需要两个队列,一个队列用于存储最先给出的堆,另一个队列用于存储合并后的堆。
值得一提的是,后面合并出来的堆,一定比前面合并出来的要大。
也就是说队列的单调性在这里是自然而然的,不需要维护的。
此时我们可以选择的操作有三种:
- 在队列1中选择最小两个
- 在队列2中选择最小两个
- 在队列1、2中的队头分别取一个
那么每次进行合并后把合并的堆出队,将合并出来的新堆入队即可。
【解题反思】
- 每次合并后不能忘记将合并的堆出队。
【参考程序】
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int n,a[10001],b[10001],ans;
int main()
{
freopen("fruit.in","r",stdin);
freopen("fruit.out","w",stdout);
cin>>n;
for (int i=1;i<=n;i++) cin>>a[i];
for (int i=0;i<=n;i++) b[i]=210000000;//初始化无穷大
a[n+1]=a[n+2]=210000000;//防止越界判定,初始化无穷大
sort(a+1,a+1+n);
int heada=1,headb=1,tailb=0;
for (int i=1;i<n;i++)
{
int tmp=min(min(a[heada+1]+a[heada],a[heada]+b[headb]),b[headb]+b[headb+1]);
//3种操作中选择耗费体力最小的
if (tmp==a[heada+1]+a[heada]) heada+=2;
else if (tmp==a[heada]+b[headb])
{
heada++;headb++;
}
else headb+=2;
//依据操作分别将合并过的数出队
tailb++;
b[tailb]=tmp;//进队
ans+=tmp;//统计
}
cout<<ans;
return 0;
}