浮点数的二进制表示 转自阮一峰的网络日志等网络博客

 

前几天,我在读一本C语言教材,有一道例题:

  #include <stdio.h>

  void main(void){

    int num=9; /* num是整型变量,设为9 */

    float* pFloat=&num; /* pFloat表示num的内存地址,但是设为浮点数 */

    printf("num的值为:%d/n",num); /* 显示num的整型值 */

    printf("*pFloat的值为:%f/n",*pFloat); /* 显示num的浮点值 */

    *pFloat=9.0; /* 将num的值改为浮点数 */

    printf("num的值为:%d/n",num); /* 显示num的整型值 */

    printf("*pFloat的值为:%f/n",*pFloat); /* 显示num的浮点值 */

  }

运行结果如下:

  num的值为:9
  *pFloat的值为:0.000000
  num的值为:1091567616
  *pFloat的值为:9.000000

我很惊讶,num和*pFloat在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方 法。我读了一些资料,下面就是我的笔记。

2.

在讨论浮点数之前,先看一下整数在计算机内部是怎样表示的。

  int num=9;

上面这条命令,声明了一个整数变量,类型为int,值为9(二进制写法为1001)。普通的32位计算机,用4个字节表示int变量,所以9就被保存为00000000 00000000 00000000 00001001,写成16进制就是0x00000009。

那么,我们的问题就简化成:为什么0x00000009还原成浮点数,就成了0.000000?

3.

根据国际标准IEEE 754,任意一个二进制浮点数V可以表示成下面的形式:

  V = (-1)^s×M×2^E

  (1)(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

  (2)M表示有效数字,大于等于1,小于2。

  (3)2^E表示指数位。

举例来说,十进制的5.0,写成二进制是101.0,相当于1.01×2^2。那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。

十进制的-5.0,写成二进制是-101.0,相当于-1.01×2^2。那么,s=1,M=1.01,E=2。

IEEE 754规定,对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

5.

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,E的真实值必须再减去一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E还可以再分成三种情况:

(1)E不全为0或不全为1。这时,浮点数就采用上面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

(2)E全为0。这时,浮点数的指数E等于1-127(或者1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

(3)E全为1。这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);如果有效数字M不全为0,表示这个数不是一个数(NaN)。

6.

好了,关于浮点数的表示规则,就说到这里。

下面,让我们回到一开始的问题:为什么0x00000009还原成浮点数,就成了0.000000?

首先,将0x00000009拆分,得到第一位符号位s=0,后面8位的指数E=00000000,最后23位的有效数字M=000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

  V=(-1)^0×0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

7.

再看例题的第二部分。

请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?

首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。

所以,写成二进制形式,应该是s+E+M,即0 10000010 001 0000 0000 0000 0000 0000。这个32位的二进制数,还原成十进制,正是1091567616。

 

 

***************************************************

 

其实整体来说,浮点数的表示方法跟我以前自己YY的差不多,需要有符号位,有数值位,还要有信息标识小数点的位置。看了这篇文章之后还比较质疑的就是在这种表示下,怎样能方便的实现浮点数的四则运算?怎样实现浮点数到整形甚至是到无符号整形的转换?

设两个浮点数 X=Mx*2Ex ,Y=My*2Ey

***************************************************

实现X±Y要用如下5步完成:

 

(1)对阶操作:小阶向大阶看齐

(2)进行尾数加减运算

(3)规格化处理:尾数进行运算的结果必须变成规格化的浮点数,对于双符号位(就是使用00表示正数,11表示负数,01表示上溢出,10表示下溢出)的补码尾数来说,就必须是

001×××…×× 或110×××…××的形式

若不符合上述形式要进行左规或右规处理。

(4)舍入操作:在执行对阶或右规操作时常用“0”舍“1”入法将右移出去的尾数数值进行舍入,以确保精度。

(5)判结果的正确性:即检查阶码是否溢出

 

若阶码下溢(移码表示是00…0),要置结果为机器0;

若阶码上溢(超过了阶码表示的最大值)置溢出标志。

 

现在用一个具体的例子来说明上面的5个步骤

 

例题:假定X=0 .0110011*211,Y=0.1101101*2-10(此处的数均为二进制), 计算X+Y;

 

首先,我们要把这两个数变成2进制表示,对于浮点数来说,阶码通常用移码表示,而尾数通常用补码表示。

 

要注意的是-10的移码是00110

        [X]浮: 0        1 010  1100110

        [Y]浮: 0        0 110  1101101

                   符号位 阶码   尾数

 

(1)求阶差:│ΔE│=|1010-0110|=0100

 

(2)对阶:Y的阶码小,Y的尾数右移4位

        [Y]浮变为 0 1 010 0000110 1101暂时保存 

 

(3)尾数相加,采用双符号位的补码运算 

     00 1100110 

   +00 0000110 

     00 1101100

 

(4)规格化:满足规格化要求 

 

(5)舍入处理,采用0舍1入法处理

 

故最终运算结果的浮点数格式为: 0 1 010 1101101

 

即X+Y=+0. 1101101*210 

 

浮点数的乘除法

 

(1)阶码运算:阶码求和(乘法)或阶码求差(除法)

    即  [Ex+Ey]移= [Ex]移+ [Ey]补 

          [Ex-Ey]移= [Ex]移+  [-Ey]补

(2)浮点数的尾数处理:浮点数中尾数乘除法运算结果要进行舍入处理

 

例题:X=0 .0110011*211,Y=0.1101101*2-10  求X*Y

 

解:[X]浮: 0 1 010 1100110

        [Y]浮: 0 0 110 1101101

 

(1)阶码相加 

[Ex+Ey]移=[Ex]移+[Ey]补=1 010+1 110=1 000 

1 000为移码表示的0

 

(2)原码尾数相乘的结果为:

0 10101101101110

 

(3)规格化处理:已满足规格化要求,不需左规,尾数不变,阶码不变。

 

(4)舍入处理:按舍入规则,加1进行修正

 

所以 X※Y= 0.1010111*20 

 

 

具体来源参考:

http://www.cnblogs.com/flyingbread/archive/2007/03/02/660206.html

http://www.ruanyifeng.com/blog/2010/06/ieee_floating-point_representation.html

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值