The 2022 ICPC Asia Xian Regional Contest (L tree)题解
题目大意
给定一棵n个节点,以1为根节点的有根树。定义 s u b t r e e ( u ) subtree(u) subtree(u)为以 u u u为根节点的子树。如果这棵树n个节点的一个子集被称为好的,那么这个子集应当至少满足一下两个条件中的一个。
- 对于选定子集中的任意两个节点 u , v u,v u,v,要么 u ∈ s u b t r e e ( v ) u\in subtree(v) u∈subtree(v),要么 v ∈ s u b t r e e ( u ) v\in subtree(u) v∈subtree(u)。
- 对于选定子集中的任意两个节点 u , v u,v u,v, u ∉ s u b t r e e ( v ) u\notin subtree(v) u∈/subtree(v)并且 v ∉ s u b t r e e ( u ) v\notin subtree(u) v∈/subtree(u)。
要求你找出最少这样的集合划分。
思路分析
考虑两种划分:
- 将树全部划分成链,这样的链全部符合第一个条件。
- 将树全部划分成分散的点,这些点符合第二个条件。
这是两种极端划分。
题目要求找出最小划分数,所以我们需要找出一些集合满足第一个条件、一些集合满足第二个条件,两种划分相加的最小时即为答案。
求解过程可以从叶子节点进行拓扑排序。
下图是第一个样例:
那么拓扑排序过程中如何记录第一类集合划分数和第二类集合划分数呢。
注意到一棵树按照链划分,那么链的数量是等于数的叶子节点数的。而一棵树如果按照第二种条件划分,那么划分数量等于树的深度。
所以代码中 k k k记录每一次划分中,按照第二类条件划分的集合数量,队列 q q q中元素的数量即为自底向上过程中树的叶子节点。然后将所有情况取一个最小值即可。
参考代码
#include <iostream>
#include <cmath>
#include <vector>
#include <stack>
#include <queue>
#include <cstring>
#include <unordered_map>
#include <algorithm>
using namespace std;
const int N=1e6+10;
int f[N],ind[N];
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
for(int i=1;i<=n;i++) f[i]=ind[i]=0;
for(int i=2;i<=n;i++)
{
int u;
cin>>u;
f[i]=u;
ind[u]++;
}
queue<int>q;
for(int i=2;i<=n;i++)
{
if(!ind[i])
{
q.push(i);
}
}
int k=0,ans=n;
while(q.size())
{
int siz=q.size();
ans=min(ans,k+siz);
k++;
while(siz--)
{
int u=q.front();
q.pop();
if(u==1) continue;
ind[f[u]]--;
if(!ind[f[u]])
{
q.push(f[u]);
}
}
}
cout<<ans<<endl;
}
return 0;
}