作者简介
袁秋龙,携程度假大数据AI研发团队实习生,专注于计算机视觉的研究和应用。在实习期间致力于度假图像智能化工作,OCR问题为实习期主要做的研究。

计算机视觉是一门研究如何让计算机“看”的科学。更进一步的说,就是使用摄像机和计算机代替人眼,让计算机像人眼一样具备对目标事物进行识别,跟踪和分析的能力。
以携程业务为例,在供应商资质鉴定,商家产品上传,产品展示等多个环节都涉及到计算机视觉技术的应用,其中包括文字识别(Optical Character Recognition,OCR)/场景文字识别(SceneText Recognition,STR),图像质量评价,智能裁剪和目标检测等。
OCR在携程业务中主要起到两方面作用。一方面是审核校验,如供应商的资质审核,对营业执照和经营许可证的信息的校验,对包含敏感词汇的产品进行自动筛选过滤等;另一方面是辅助录入,如辅助运营录入营业执照,经营许可证等信息。
本文主要介绍文字识别在携程业务中相关应用及对应解决方案。

OCR技术由两方面组成,分别为文字的检测和文字内容的识别,如图1所示。
其中,文字检测主要有基于笔划特征的方法(Stroke Width Transform,SWT)[1]、基于稳定区域(Maximally Stable Extremal Region,MSER)[2]的方法和基于全卷积网络(FullyConvolutional Networks,FCN)和循环神经网络(RNN)相结合的方法[3],由于基于神经网络的方法对复杂背景具有较强的鲁棒性,目前已经成为文字检测的主流方法。
而文字识别则主要分为基于单个字符的方法和基于序列的识别方法,其中基于单个字符的方法有基于传统DPM[4]特征和基于卷积网络[5]提取的特征,基于序列的则有CTC(Connectionist Temporal Classification)[6,7]和Seq2Seq[8]两种模式。
图1 图像中的文字检测和识别过程

我们的方案也是由