函数题目合集

一:使用函数求余弦函数的近似值 (15 分)

本题要求实现一个函数,用下列公式求cos(x)的近似值,精确到最后一项的绝对值小于e:

cos(x)=x0/0!−x2/2!+x4/4!−x6/6!+⋯

函数接口定义:

double funcos( double e, double x );

其中用户传入的参数为误差上限e和自变量x;函数funcos应返回用给定公式计算出来、并且满足误差要求的cos(x)的近似值。输入输出均在双精度范围内。

裁判测试程序样例:

#include <stdio.h>
#include <math.h>

double funcos( double e, double x );

int main()
{    
    double e, x;

    scanf("%lf %lf", &e, &x);
    printf("cos(%.2f) = %.6f\n", x, funcos(e, x));

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

0.01 -3.14

输出样例:

cos(-3.14) = -0.999899

 我的代码:

double funcos (double e,double x){
	int flag=1,i=0;
	double item=1,factor=1,result=0;
	while(fabs(item)>e){
	if(i!=0)             //如果i=0,直接进行计算
	factor=factor*i*(i-1);//题目要求是0!,2!···所以使用i*(i-1),不用常规的循环求阶乘
	item=flag*pow(x,i)/factor;
	result=result+item;
	i+=2;
	flag=-flag;			
	}
	return result;
}

二:使用函数输出指定范围内的完数 (20 分)

本题要求实现一个计算整数因子和的简单函数,并利用其实现另一个函数,输出两正整数m和n(0<m≤n≤10000)之间的所有完数。所谓完数就是该数恰好等于除自身外的因子之和。例如:6=1+2+3,其中1、2、3为6的因子。

函数接口定义:

int factorsum( int number );
void PrintPN( int m, int n );

其中函数factorsum须返回int number的因子和;函数PrintPN要逐行输出给定范围[mn]内每个完数的因子累加形式的分解式,每个完数占一行,格式为“完数 = 因子1 + 因子2 + ... + 因子k”,其中完数和因子均按递增顺序给出。如果给定区间内没有完数,则输出一行“No perfect number”。

裁判测试程序样例:

#include <stdio.h>

int factorsum( int number );
void PrintPN( int m, int n );

int main()
{
    int m, n;

    scanf("%d %d", &m, &n);
    if ( factorsum(m) == m ) printf("%d is a perfect number\n", m);
    if ( factorsum(n) == n ) printf("%d is a perfect number\n", n);
    PrintPN(m, n);

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例1:

6 30

输出样例1:

6 is a perfect number
6 = 1 + 2 + 3
28 = 1 + 2 + 4 + 7 + 14

输入样例2:

7 25

输出样例2:

No perfect number

 我的代码:

int factorsum(int number){
	int i,sum=0;
	for(i=1;i<number;i++){//注意!!不包括自身
	if(number%i==0) //对number取余求因子
	sum=sum+i;
	}
	return sum;	
}

void PrintPN(int m,int n){
	int sum,x,i,flag=0; 
	for(x=m;x<=n;x++){
		sum=factorsum(x);//调用第一个函数得到因子和
	if(sum==x){
        flag=1;  //是完数
		printf("%d = 1",x); 
	for(i=2;i<x;i++){// 用循环逐个输出因子
		if(x%i==0)
		printf(" + %d",i);
		}
		printf("\n");//换行输出下个完数
        }
    }
    if(flag==0) printf("No perfect number"); 
}

三:使用函数验证哥德巴赫猜想 (20 分)

本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于6的偶数均可表示为两个奇素数之和。素数就是只能被1和自身整除的正整数。注意:1不是素数,2是素数。

函数接口定义:

int prime( int p );
void Goldbach( int n );

其中函数prime当用户传入参数p为素数时返回1,否则返回0;函数Goldbach按照格式“n=p+q”输出n的素数分解,其中p≤q均为素数。又因为这样的分解不唯一(例如24可以分解为5+19,还可以分解为7+17),要求必须输出所有解中p最小的解。

裁判测试程序样例:

#include <stdio.h>
#include <math.h>

int prime( int p );
void Goldbach( int n );

int main()
{
    int m, n, i, cnt;

    scanf("%d %d", &m, &n);
    if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
    if ( m < 6 ) m = 6;
    if ( m%2 ) m++;
    cnt = 0;
    for( i=m; i<=n; i+=2 ) {
        Goldbach(i);
        cnt++;
        if ( cnt%5 ) printf(", ");
        else printf("\n");
    }

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

89 100

输出样例:

89 is a prime number
90=7+83, 92=3+89, 94=5+89, 96=7+89, 98=19+79
100=3+97, 

我的代码:

int prime (int p){
	int flag=1,i;
	if(p==1) return 0;
	if(p==2) return 1; 
	for(i=2;i<=sqrt(p);i++){
		if(p%i==0){
			flag=0;
			break;
		}
	}
	if(flag==1) return 1;
	else return 0;	
}

void Goldbach(int n){
	    int i;
	    for(i=2;i<=n;i++){  //i=2,因为1不是素数,所以直接从2开始
	        if(prime(i)){  //用循环可以保证是从小到大依次增加的
	        	if(prime(n-i)){  
	        	printf("%d=%d+%d",n,i,n-i);
				break;	
				}
			}		
		}
	}

四:使用函数求特殊a串数列和 (20 分)

给定两个均不超过9的正整数a和n,要求编写函数求a+aa+aaa++⋯+aa⋯a(n个a)之和。

函数接口定义:

int fn( int a, int n );
int SumA( int a, int n );

其中函数fn须返回的是na组成的数字;SumA返回要求的和。

裁判测试程序样例:

#include <stdio.h>

int fn( int a, int n );
int SumA( int a, int n );

int main()
{
    int a, n;

    scanf("%d %d", &a, &n);
    printf("fn(%d, %d) = %d\n", a, n, fn(a,n));        
    printf("s = %d\n", SumA(a,n));    

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例:

2 3

输出样例:

fn(2, 3) = 222
s = 246

我的代码: 

int fn(int a,int n){
	int result=0,b,i;
	for(i=0;i<=n;i++){	
	b=a*pow(10,i-1); 
	result=result+b; 
    }
	return result;
} 

int SumA(int a,int n){
	int i,sum=0;
	for(i=0;i<=n;i++){
		sum=sum+fn(a,i);
	}
	return sum;	
}

五:使用函数输出指定范围内的Fibonacci数 (20 分)

本题要求实现一个计算Fibonacci数的简单函数,并利用其实现另一个函数,输出两正整数m和n(0<m≤n≤10000)之间的所有Fibonacci数。所谓Fibonacci数列就是满足任一项数字是前两项的和(最开始两项均定义为1)的数列。

函数接口定义:

int fib( int n );
void PrintFN( int m, int n );

其中函数fib须返回第n项Fibonacci数;函数PrintFN要在一行中输出给定范围[mn]内的所有Fibonacci数,相邻数字间有一个空格,行末不得有多余空格。如果给定区间内没有Fibonacci数,则输出一行“No Fibonacci number”。

裁判测试程序样例:

#include <stdio.h>

int fib( int n );
void PrintFN( int m, int n );

int main()
{
    int m, n, t;

    scanf("%d %d %d", &m, &n, &t);
    printf("fib(%d) = %d\n", t, fib(t));
    PrintFN(m, n);

    return 0;
}

/* 你的代码将被嵌在这里 */

输入样例1:

20 100 7

输出样例1:

fib(7) = 13
21 34 55 89

输入样例2:

2000 2500 8

输出样例2:

fib(8) = 21
No Fibonacci number

我的代码:

int fib( int n){
   int n1,n2,n3,i;
   n1=1;
   n2=1;
   if(n==1||n==2){
   return n1;
   }
   for(i=2;i<n;i++){
   n3=n1+n2;
   n1=n2;
   n2=n3;  
   }
   return n3;   
} 

void PrintFN( int m,int n){
   int i,count=0,num;
   for(i=1;i<=n+m;i++){  //使i的取值范围较大吧?emmmm我不知道咋说
   num=fib(i);
   if(num>=m&&num<=n){
   (count==0)?printf("%d",num):printf(" %d",num);  //注意格式!!
   	count++;
   }
   if(num>n) //超出范围直接跳出
   break;
   }
   if(count==0) //count为0,没有num的值满足条件
   printf("No Fibonacci number");
   }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值