一:使用函数求余弦函数的近似值 (15 分)
本题要求实现一个函数,用下列公式求cos(x)的近似值,精确到最后一项的绝对值小于e:
cos(x)=x0/0!−x2/2!+x4/4!−x6/6!+⋯
函数接口定义:
double funcos( double e, double x );
其中用户传入的参数为误差上限e
和自变量x
;函数funcos
应返回用给定公式计算出来、并且满足误差要求的cos(x)的近似值。输入输出均在双精度范围内。
裁判测试程序样例:
#include <stdio.h>
#include <math.h>
double funcos( double e, double x );
int main()
{
double e, x;
scanf("%lf %lf", &e, &x);
printf("cos(%.2f) = %.6f\n", x, funcos(e, x));
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
0.01 -3.14
输出样例:
cos(-3.14) = -0.999899
我的代码:
double funcos (double e,double x){
int flag=1,i=0;
double item=1,factor=1,result=0;
while(fabs(item)>e){
if(i!=0) //如果i=0,直接进行计算
factor=factor*i*(i-1);//题目要求是0!,2!···所以使用i*(i-1),不用常规的循环求阶乘
item=flag*pow(x,i)/factor;
result=result+item;
i+=2;
flag=-flag;
}
return result;
}
二:使用函数输出指定范围内的完数 (20 分)
本题要求实现一个计算整数因子和的简单函数,并利用其实现另一个函数,输出两正整数m和n(0<m≤n≤10000)之间的所有完数。所谓完数就是该数恰好等于除自身外的因子之和。例如:6=1+2+3,其中1、2、3为6的因子。
函数接口定义:
int factorsum( int number );
void PrintPN( int m, int n );
其中函数factorsum
须返回int number
的因子和;函数PrintPN
要逐行输出给定范围[m
, n
]内每个完数的因子累加形式的分解式,每个完数占一行,格式为“完数 = 因子1 + 因子2 + ... + 因子k”,其中完数和因子均按递增顺序给出。如果给定区间内没有完数,则输出一行“No perfect number”。
裁判测试程序样例:
#include <stdio.h>
int factorsum( int number );
void PrintPN( int m, int n );
int main()
{
int m, n;
scanf("%d %d", &m, &n);
if ( factorsum(m) == m ) printf("%d is a perfect number\n", m);
if ( factorsum(n) == n ) printf("%d is a perfect number\n", n);
PrintPN(m, n);
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例1:
6 30
输出样例1:
6 is a perfect number
6 = 1 + 2 + 3
28 = 1 + 2 + 4 + 7 + 14
输入样例2:
7 25
输出样例2:
No perfect number
我的代码:
int factorsum(int number){
int i,sum=0;
for(i=1;i<number;i++){//注意!!不包括自身
if(number%i==0) //对number取余求因子
sum=sum+i;
}
return sum;
}
void PrintPN(int m,int n){
int sum,x,i,flag=0;
for(x=m;x<=n;x++){
sum=factorsum(x);//调用第一个函数得到因子和
if(sum==x){
flag=1; //是完数
printf("%d = 1",x);
for(i=2;i<x;i++){// 用循环逐个输出因子
if(x%i==0)
printf(" + %d",i);
}
printf("\n");//换行输出下个完数
}
}
if(flag==0) printf("No perfect number");
}
三:使用函数验证哥德巴赫猜想 (20 分)
本题要求实现一个判断素数的简单函数,并利用该函数验证哥德巴赫猜想:任何一个不小于6的偶数均可表示为两个奇素数之和。素数就是只能被1和自身整除的正整数。注意:1不是素数,2是素数。
函数接口定义:
int prime( int p );
void Goldbach( int n );
其中函数prime
当用户传入参数p
为素数时返回1,否则返回0;函数Goldbach
按照格式“n
=p+q”输出n
的素数分解,其中p≤q均为素数。又因为这样的分解不唯一(例如24可以分解为5+19,还可以分解为7+17),要求必须输出所有解中p最小的解。
裁判测试程序样例:
#include <stdio.h>
#include <math.h>
int prime( int p );
void Goldbach( int n );
int main()
{
int m, n, i, cnt;
scanf("%d %d", &m, &n);
if ( prime(m) != 0 ) printf("%d is a prime number\n", m);
if ( m < 6 ) m = 6;
if ( m%2 ) m++;
cnt = 0;
for( i=m; i<=n; i+=2 ) {
Goldbach(i);
cnt++;
if ( cnt%5 ) printf(", ");
else printf("\n");
}
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
89 100
输出样例:
89 is a prime number
90=7+83, 92=3+89, 94=5+89, 96=7+89, 98=19+79
100=3+97,
我的代码:
int prime (int p){
int flag=1,i;
if(p==1) return 0;
if(p==2) return 1;
for(i=2;i<=sqrt(p);i++){
if(p%i==0){
flag=0;
break;
}
}
if(flag==1) return 1;
else return 0;
}
void Goldbach(int n){
int i;
for(i=2;i<=n;i++){ //i=2,因为1不是素数,所以直接从2开始
if(prime(i)){ //用循环可以保证是从小到大依次增加的
if(prime(n-i)){
printf("%d=%d+%d",n,i,n-i);
break;
}
}
}
}
四:使用函数求特殊a串数列和 (20 分)
给定两个均不超过9的正整数a和n,要求编写函数求a+aa+aaa++⋯+aa⋯a(n个a)之和。
函数接口定义:
int fn( int a, int n );
int SumA( int a, int n );
其中函数fn
须返回的是n
个a
组成的数字;SumA
返回要求的和。
裁判测试程序样例:
#include <stdio.h>
int fn( int a, int n );
int SumA( int a, int n );
int main()
{
int a, n;
scanf("%d %d", &a, &n);
printf("fn(%d, %d) = %d\n", a, n, fn(a,n));
printf("s = %d\n", SumA(a,n));
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
2 3
输出样例:
fn(2, 3) = 222
s = 246
我的代码:
int fn(int a,int n){
int result=0,b,i;
for(i=0;i<=n;i++){
b=a*pow(10,i-1);
result=result+b;
}
return result;
}
int SumA(int a,int n){
int i,sum=0;
for(i=0;i<=n;i++){
sum=sum+fn(a,i);
}
return sum;
}
五:使用函数输出指定范围内的Fibonacci数 (20 分)
本题要求实现一个计算Fibonacci数的简单函数,并利用其实现另一个函数,输出两正整数m和n(0<m≤n≤10000)之间的所有Fibonacci数。所谓Fibonacci数列就是满足任一项数字是前两项的和(最开始两项均定义为1)的数列。
函数接口定义:
int fib( int n );
void PrintFN( int m, int n );
其中函数fib
须返回第n
项Fibonacci数;函数PrintFN
要在一行中输出给定范围[m
, n
]内的所有Fibonacci数,相邻数字间有一个空格,行末不得有多余空格。如果给定区间内没有Fibonacci数,则输出一行“No Fibonacci number”。
裁判测试程序样例:
#include <stdio.h>
int fib( int n );
void PrintFN( int m, int n );
int main()
{
int m, n, t;
scanf("%d %d %d", &m, &n, &t);
printf("fib(%d) = %d\n", t, fib(t));
PrintFN(m, n);
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例1:
20 100 7
输出样例1:
fib(7) = 13
21 34 55 89
输入样例2:
2000 2500 8
输出样例2:
fib(8) = 21
No Fibonacci number
我的代码:
int fib( int n){
int n1,n2,n3,i;
n1=1;
n2=1;
if(n==1||n==2){
return n1;
}
for(i=2;i<n;i++){
n3=n1+n2;
n1=n2;
n2=n3;
}
return n3;
}
void PrintFN( int m,int n){
int i,count=0,num;
for(i=1;i<=n+m;i++){ //使i的取值范围较大吧?emmmm我不知道咋说
num=fib(i);
if(num>=m&&num<=n){
(count==0)?printf("%d",num):printf(" %d",num); //注意格式!!
count++;
}
if(num>n) //超出范围直接跳出
break;
}
if(count==0) //count为0,没有num的值满足条件
printf("No Fibonacci number");
}