概念
并查集:
集:集合。
并:合并,将两个元素合并到一个集合中
查:查找,1.查找父结点。2.查找两个元素是否在一个集合中
也就是对集合进行合并,查找;
这个可以解决很多问题。
初始化
介绍
并查集一般设为所有父结点先为自己(也就是自己是自己的最终祖先,也就是集合中只有一个元素)
代码
int init()//初始化
{
for(int i=1;i<=n;i++)
fa[i]=i;
}
查找父结点
介绍
不断查找当前结点的父亲结点,直至最终祖先结点!!!
找爸爸的爸爸的爸爸的爸爸的爸爸…………
路径压缩
路径压缩就是通过回溯,记忆化将所有点的父结点都设置为最终祖先结点。这样可以大大提高效率,减少时间。
return fa[x]=getfather(fa[x]);//路径压缩。
代码
int getfather(int x)//找父结点
{
if (fa[x]==x)
return x;
else return fa[x]=getfather(fa[x]);//回溯 将每个父结点都设为最终祖先点(路径压缩)
//一行问号表达
//return (fa[x]==x) ? x:(fa[x]=getfather(fa[x]));
}//递归版本
int getfather(int x)
{
int y=x;
while (fa[y]!=y)
y=fa[y];
while (x!=y)
{
int temp=fa[i];
fa[i]=y;
x=temp;
}//回溯存储 (路径压缩)
return y;
} //非递归版本
查找是否同一集合
介绍
找两个元素最终祖先结点,若是同一个,则为一个集合中的。反之则不然。
代码
bool chazhao(int x,int y)
{
int x1=getfather(x),y1=getfather(y);
return x1==y1;
}
合并
介绍
。。。打一个不接地气的比方。。
就是元素A发现自己与元素B是失散多年的亲兄弟,或者B是A的父亲。
那么要将他们的家族合并在一起,就将A的最终祖先设置为B。
在进行查找父结点中路径压缩,那么他们的最终祖先就相同了,也就是合并为一个集合了。
代码
void hebing(int x,int y)
{
x=getfather(x);//找x最终祖先
y=getfather(y);//找y最终祖先
if(x==y) return ;//是同个集合
else fa[x]=y;//不是则合并(认亲)。
}