并查集

概念

并查集:
集:集合。
并:合并,将两个元素合并到一个集合中
查:查找,1.查找父结点。2.查找两个元素是否在一个集合中
也就是对集合进行合并,查找;
这个可以解决很多问题。

初始化

介绍

并查集一般设为所有父结点先为自己(也就是自己是自己的最终祖先,也就是集合中只有一个元素)

代码

int init()//初始化 
{
    for(int i=1;i<=n;i++)
      fa[i]=i;
}

查找父结点

介绍

不断查找当前结点的父亲结点,直至最终祖先结点!!!
找爸爸的爸爸的爸爸的爸爸的爸爸…………

路径压缩

路径压缩就是通过回溯,记忆化将所有点的父结点都设置为最终祖先结点。这样可以大大提高效率,减少时间。

return fa[x]=getfather(fa[x]);//路径压缩。

代码

int getfather(int x)//找父结点 
{
    if (fa[x]==x)
      return x;
    else return fa[x]=getfather(fa[x]);//回溯 将每个父结点都设为最终祖先点(路径压缩)
    //一行问号表达 
    //return (fa[x]==x) ? x:(fa[x]=getfather(fa[x]));
}//递归版本
int getfather(int x)
{
    int y=x;
    while (fa[y]!=y)
      y=fa[y];
    while (x!=y)
      {
        int temp=fa[i];
        fa[i]=y;
        x=temp;
      }//回溯存储 (路径压缩)
    return y;
} //非递归版本 

查找是否同一集合

介绍

找两个元素最终祖先结点,若是同一个,则为一个集合中的。反之则不然。

代码

bool chazhao(int x,int y)
{
    int x1=getfather(x),y1=getfather(y);
    return x1==y1;
} 

合并

介绍

。。。打一个不接地气的比方。。
就是元素A发现自己与元素B是失散多年的亲兄弟,或者B是A的父亲。
那么要将他们的家族合并在一起,就将A的最终祖先设置为B。
在进行查找父结点中路径压缩,那么他们的最终祖先就相同了,也就是合并为一个集合了。

代码

void hebing(int x,int y)
{
    x=getfather(x);//找x最终祖先 
    y=getfather(y);//找y最终祖先 
    if(x==y) return ;//是同个集合 
    else fa[x]=y;//不是则合并(认亲)。 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值