浅谈最大子序和中的dp优化策略

本文探讨了Tyvj P1305最大子序和问题的动态规划解决方案,通过优化将空间复杂度降低,并最终利用前缀和与线段树将时间复杂度降至Θ(NlgN)。
摘要由CSDN通过智能技术生成

参考资料
本题tyvj题解
《算法艺术与信息学竞赛》

Tyvj P1305 最大子序和

时间: 1000ms / 空间: 131072KiB / Java类名: Main

描述

输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大。
例如

1,-3,5,1,-2,3
当m=4时,S=5+1-2+3=7
当m=2或m=3时,S=5+1=6  
输入格式

第一行两个数n,m
第二行有n个数,要求在n个数找到最大子序和

输出格式

一个数,数出他们的最大子序和

测试样例
输入
6 4 
1 -3 5 1 -2 3
输出
7
备注

数据范围:
100%满足n,m<=300000

第一步:50分

这是经典问题最大子数组的修改版,乍一看似乎有点无从下手。但是经过分析不难得出一个2D/0D的dp方程。不妨用f(i,j)表示前i个数向前j个的子序和的最大值。注意题目中的要求 不超过M ,所以决策有以下几种:

  1. 当j=0时,f(i,j) = 0
  2. 如果f(i-1, j-1) > 0,那么f(i, j) = f(i-1, j-1)+a[i]
  3. 否则 f(i,j) = 0

在这个思想的指导下,不难写出dp方程:
f(i,j) = max(0, f(i-1, j-1)+a[i])
最后的结果是max{f(i,M) | 1≤i≤n}
显然i,j都是递增的,只要简单地i,j递增dp就可以解决问题了

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int n, m;
int a[4001];
int dp[4001][4001];
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值