动态规划若干优化 & 集训部分总结

1,多重背包的 2k 拆分优化

例题:Dividing
http://poj.org/problem?id=1014

很容易看成一个多重背包模型。一个显然的做法是直接将问题看成01背包,然而复杂度无法接受。所谓 2k 拆分,基于如下的事实: sum=20+21+22...2n+k 加数中若干项的和的取值范围为且恰好为 [1,sum] 。例如:取1,2和4的情况蕴含了取3,5,6,7的情况,因此不必考虑。至此,只要对于每个num[i],利用枚举将其拆成如上的序列,把每一项看成一件物品进行01背包即可。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;

int num[7];
int dp[100001];
int tmp[100001];
int k = 1, tp = 0;
int main() {
    while (scanf("%d%d%d%d%d%d", &num[1], &num[2], &num[3], &num[4], &num[5], &num[6])){
        memset(dp,0,sizeof dp);
        if (num[1] == 0 && num[2]==0 && num[3]==0&&num[4]==0&&num[5]==0&&num[6]==0)
            break;
        printf("Collection #%d:\n", k++);
        int sigma = 0;
        for (int i = 1; i <= 6; i++)
            sigma += num[i]*i;
        if (sigma&1) {
            puts("Can't be divided.\n");
        } else {
            for (int i = 1; i <= 6; i++) {
                tp = 0;
                for (int j = 1; num[i] >= j; j<<=1) {
                    if (num[i] >= j) {
                        tmp[++tp] = j;
                        num[i]-=j;
                    }
                }
                if (num[i] != 0) tmp[++tp] = num[i];
                dp[0] = 1;
                for (int j = 1; j <= tp; j++)
                    for (int k = sigma; k >= i*tmp[j]; k--)
                        dp[k] += dp[k-i*tmp[j]];
            }
            if (dp[sigma/2])
                puts("Can be divided.\n");
            else
                puts("Can't be divided.\n");
        }
    }

    return 0;
}

2. 缩小决策序列

例题1:Railway tickets
http://poj.org/problem?id=2355

这个题很容易想到1D/1D方程。显然:如果能用同样的票价走到更远的地方,何乐而不为呢?所以转移的条件是:距离这一站用每种票能走到最远的一站。由于同种票所能走到的距离是一定的,当dp中所在位置单调时,决策位置也必然单调。因此可以用摊还O(1)的时间找到决策区域,变成了1D/0D方程。不难写出程序:
注意正反分开讨论。

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

long long l1,l2,l3,c1,c2,c3;
long long n, a, b;
long long f[10005];
long long dp[10005];

int main() {
    //freopen("rail.in","r",stdin);
    //freopen("rail.out","w",stdout);
    scanf("%d%d%d%d%d%d%d%d%d", &l1, &l2, &l3, &c1, &c2, &c3, &n, &a, &b);
    f[1] = 0;
    for (int i = 2; i <= n; i++)
        scanf("%d", &f[i]);
    memset(dp, 127, sizeof dp);
    if (a <= b) {
        int i, j, k1,k2,k3;
        k1 = k2 = k3 = a;
        dp[a] = 0;
        for (i = a+1; i <= b; i++) {
            for (; f[i]-f[k3] > l3; k3++);
            for (; f[i]-f[k2] > l2; k2++);
            for (; f[i]-f[k1] > l1; k1++);
            dp[i] = min(dp[k1]+c1, min(dp[k2]+c2, dp[k3]+c3));
        }
        cout << dp[b] << endl;
    } else {
        int i, j, k1,k2,k3;
        k1 = k2 = k3 = a;
        dp[a] = 0;
        for (i = a-1; i >= b; i--) {
            for (; f[k3]-f[i] > l3&&k3>=i; k3--);
            for (; f[k2]-f[i] > l2&&k2>=i; k2--);
            for (; f[k1]-f[i] > l1&&k1>=i; k1--);
            dp[i] = min(dp[k1]+c1, min(dp[k2]+c2, dp[k3]+c3));
        }
        cout << dp[b] << endl;
    }
    return 0;
}

例题2:石子合并(经典题)
方程: dp[i,j]=max(dp[i,k],dp[k+1,j])+Σa[i,j] 。可以通过构造反证法证明:dp[i,j]取最大值,当且仅当k = i或k = j。这样就很简单了。
一个简单易行的方法是:用大数据测试优化是否正确。

例题3:oj 9285:盒子与小球之三
http://noi.openjudge.cn/ch0206/9285/
一道很典型的dp优化题目。
先变原问题为:从[0,k]中取出m个自然数,使其和为n
dp[i][j]表示[0,k]中取出i个,使其和为j的方案数。很容易写2d/1d方程(和子集合很像): dp[i][j]=kl=0dp[i1][jl](1)
变形一下: dp[i][j1]=k+1l=1dp[i1][jl](2)
(1)-(2),并移项合并得到

dp[i][j]=dp[i][j1]+dp[i1][j]dp[i1][jk1]

至此已经转化为了 O(n2) 算法。至于边界处理什么细节很坑QwQ,别问我怎么知道的。
- 可以先处理第一行和第一列,可以省去很多细节判断;
- 为了防止j-k-1超界,要加一句if (j-k-1 >= 0;
- 负数取模的方法是取模 加模 再取模

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;

int n,m,k;
int dp[5005][5005];

inline int mod(int x){
    if (x > 0) return x%1000007;
    return (x%1000007+1000007)%1000007;
}

int main() {
    scanf("%d%d%d", &n, &m, &k);
    memset(dp,0,sizeof dp);
    for (int j = 1; j <= k && j <= n; j++) 
        dp[1][j] = 1;
    for (int j = 0; j <= m; j++)
        dp[j][0] = 1;
    for (int i = 2; i <= m; i++) {
        for (int j = 1; j <= n; j++) {
            dp[i][j] = dp[i][j-1]+dp[i-1][j];
            if (j-k-1 >= 0)
                dp[i][j] -= dp[i-1][j-k-1];
            dp[i][j] = mod(dp[i][j]);
        }
    }
    cout << mod(dp[m][n]) << endl;
    return 0;
}

例题4:花店橱窗
http://tyvj.cn/p/1124
和3很像,且更简单,略。

#include <iostream>
#include <cstring>
using namespace std;

int n, m;
int tab[105][105];
int dp[105][105];
int choose[105];


int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; i++)
        for (int j = 1; j <= m; j++)
            cin >> tab[i][j];
    memset(dp,-127,sizeof dp);
    dp[n][m] = tab[n][m];
    for (int j = m-1; j >= 1; j--)
        dp[n][j] = max(tab[n][j], dp[n][j+1]);
    for (int i = n-1; i >= 1; i--)
        for (int j = m-1; j >= 1; j--)
            dp[i][j] = max(dp[i][j+1], dp[i+1][j+1]+tab[i][j]);
    cout << dp[1][1] << endl; 
    for (int i = 1; i <= n; i++)
        for (int j = choose[i-1]+1; j <= m; j++)
            if (dp[i][j] == dp[i+1][j+1]+tab[i][j] || (i == n && dp[i][j] == tab[i][j])) {
                choose[i] = j;
                break;
            }
    for (int i = 1; i <= n; i++)
        cout << choose[i] << " ";
    return 0;
}

3. 乱入的一道图论题

ROADS
http://poj.org/problem?id=1724

思路来自《road结题报告,曹利国》。首先查找不计钱的最短路径,再查找不计路程的最小钱。拿这两个东西做剪枝条件,可以几乎秒杀。(是否可以证明算法是多项式的?)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值