前言
就在前不久,OpenAI 发布了推理能力更强可达理科博士生水准的o1 模型,业界也表示这标志着人工智能发展的新里程碑,特别是在复杂问题解决和推理方面。
然而,该模型与其前身GPT-4o有很大不同,后者仍然广泛用于通用人工智能任务。
那这两个由同一个公司开发的AI模型,到底有哪些不同呢?
在本文中,我们将详细比较这两个模型,重点介绍它们的优势、局限性和用例,以帮助确定每个模型何时最适合。
OpenAI o1 概述
OpenAI 的 o1 模型于 2024 年底推出,在处理复杂推理任务方面取得了重大进步。o1 通过大规模的强化学习进行训练,并运用了思路链 (CoT) 流程,这让它能把复杂问题拆解成更小的、可控的步骤,最终轻松得出解决方案。这种设计让它在高等数学、编码和科学研究等领域表现得相当出色。
o1 模型的主要亮点包括:
- 在处理推理复杂的任务时的超强表现。
- 支持高达 128k 个标记的大型上下文窗口,特别适合长时间对话和深入的查询。
- 在竞技编程和科学基准测试中取得优异成绩。
o1系列包含两个版本:
- o1-preview:专注于推理和高级问题解决。
- o1-mini:一种更快速、更实惠的版本,主要用于编码应用,非常适合想要高效解决问题的用户。