Claude 的上下文检索功能提升了 RAG 准确率,这会是人工智能革命?

前言

在人工智能领域不断进步的过程中,人们对更准确且具备上下文理解能力的响应的追求,催生了诸多突破性创新。

而 Claude 的上下文检索技术就是其中一项进步,有望显著提升检索增强生成 (RAG) 系统的表现。

可能有同学就要问了:上下文检索技术是什么?

大白话来说,就是现在的AI越来越聪明了,尤其是在回答问题的时候,它可以更好地理解和利用上下文,而不仅仅是“查”到一些零碎的信息。

而本篇文章将讲解 Claude 先进的上下文检索技术如何提高 RAG 准确性,提高 AI 的知识检索能力,从而获得更精确、更具上下文感知的响应

如果你对Claude感兴趣的话,又很想升级Claude Pro,可以看看往期文章

RAG 革命及其局限性

RAG (检索增强生成)改变了游戏规则,为 AI 模型提供了庞大的知识库。

通过检索相关信息并将其纳入生成过程,RAG 系统使 AI 能够提供更明智、更准确的响应。

不过,传统的 RAG 解决方案往往难以保留上下文,导致系统无法检索最相关的信息。打个比方,你和AI聊了一阵,它可能忘记了前面说过的话,没法持续保持“记忆”,导致有时给出的信息不够准确。

而这种局限性在需要细致理解或特定领域知识的场景中尤为明显。例如,如果无法全面掌握业务背景,客户支持聊天机器人可能难以提供准确的帮助,而如果无法访问相关案例历史,法律分析机器人可能会失败。

进入上下文检索:范式转变

Anthropic 的上下文检索方法代表了解决这些挑战的重大飞跃。通过引入两个关键子技术——上下文嵌入上下文 BM25(下文会对这两个子技术进行解释)。

这两个技术的结合极大地改进了RAG系统的效果,这些创新之后的影响也是惊人的:

  • 仅上下文嵌入就将检索失败率降低了 35%(从 5.7% 降至 3.7%)。
  • 上下文嵌入和上下文 BM25 的组合进一步将失败率降低了 49%(从 5.7% 降至 2.9%)。
  • 与重新排序技术结合使用时,检索失败率可大幅降低 67%。

这些进步显著提高了搜索准确性,从而也提高了广泛 AI 应用的性能。

解读语境检索

上下文检索的核心就是尽量保留和利用相关的上下文信息,特别是在面对大型数据库和复杂问题时。这里面有两个关键部分:

  • 上下文嵌入

这个技术通过给每个文本片段加上背景信息,确保系统能理解这些片段的语义。简单来说,AI不仅知道每个词的意思,还知道它们背后的含义。

  • 上下文 BM25

这是结合了传统的文本匹配算法,确保AI可以处理那些对精确匹配有要求的查询。这样,AI既可以理解大概意思,又能精确找到关键字,适用于更多不同类型的问题。

重新构想检索过程

有了上下文检索,整个检索流程也变得更加优化。它包括:

文档分块和上下文生成
嵌入和 BM25 索引创建
搜索和排序
上下文融合和最终生成回答
这样,每个步骤都可以保持上下文,确保AI生成的答案更加相关。

重新排序:最后一步的优化

上下文检索的最后一步是“重新排序”,这相当于给找到的答案再打个分,确保最终传递给AI的内容是最相关的。

成本和效率考虑

而这么强大的技术也带来了计算成本的问题。为了应对这个挑战,Anthropic 引入了一个优化方案,叫做“即时缓存”。它可以存储和重复使用上下文信息,这样一来,系统的运行成本和时间都会大大降低。

实际效果是:

  • 上下文嵌入的生成成本降低了90%
  • 检索延迟减少了50%

这使得上下文检索不仅强大,而且在大规模应用中也变得可行。

现实中的应用

这种技术不只是理论上的进步,它可以真正改变很多AI应用。比如:

  • 客服系统可以提供更个性化的帮助
  • 法律AI可以更精准地分析案件
  • 研究助手可以更细致地提供信息
  • 内容推荐系统可以更好地匹配用户的需求

未来展望

尽管上下文检索已经取得了显著进步,这可能还只是个开始。未来的发展可能会让AI理解和利用上下文的能力更强,比如:

  • 更复杂的上下文生成
  • 与其他高级NLP模型的结合
  • 多模态检索,包括图像、音频和视频

这项技术将为更智能、更细腻的AI系统铺平道路。

最后有话说

Claude 的上下文检索技术确实为 AI 在理解和记忆对话背景方面带来了巨大的进步。它解决了传统 RAG 系统难以保持上下文的缺点,让 AI 能够给出更加准确、贴近用户需求的答案。这种技术特别适合复杂的、需要细致分析的场景,比如法律分析或客户支持。

不过,从长远来看,随着多模态技术的发展,如何在更多数据形式中应用上下文检索,仍是个值得期待的方向。总的来说,这是 AI 迈向更智能、更人性化的重要一步。

往期文章推荐:

(最新详细图文教程)如何注册升级Claude3大模型,Claude 3.5订阅升级教程以及防封号经验

Hugging Face 是一个专注于自然语言处理(NLP)的开源项目,提供了大量预训练模型和工具库,以便研究人员和开发者能够轻松地构建和部署NLP模型。其中,RAG(Retrieval-Augmented Generation)是Hugging Face库中的一个模型架构,它结合了信息检索和文本生成技术,能够利用外部知识库来增强生成的内容质量。 搭建一个基于Hugging Face RAG的模型,大致可以分为以下几个步骤: 1. 安装依赖:首先需要安装Hugging Face的Transformers库,它包含了RAG模型的实现。可以通过Python的包管理器pip安装: ```bash pip install transformers ``` 2. 导入模型:使用Transformers库中提供的RAG模型类导入预训练的RAG模型。例如,如果你想要使用RAG的变体RAG-Sequence版本,可以这样导入: ```python from transformers import RAGSequenceForGeneration ``` 3. 准备数据:你需要准备好用于生成的输入问题,以及相应的知识库或文档集合,RAG模型会利用这些知识来生成答案。 4. 搭建模型:使用导入的RAG模型类创建模型实例,并进行适当的配置。例如: ```python model = RAGSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq") ``` 5. 生成文本:最后,使用准备好的模型和数据进行文本生成。你需要提供编码后的输入数据,并调用模型生成文本的方法。 需要注意的是,RAG模型需要配合知识库来使用,以便在生成文本时检索相关的信息。因此,你还需要搭建一个知识库检索系统,这可能需要使用到诸如Elasticsearch这样的搜索引擎。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ztop

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值