蓝桥杯真题(JAVA)--分巧克力

该文章描述了一个编程挑战,涉及到用二分查找算法来解决一个公平分配问题。小明需要将不同尺寸的长方形巧克力平均分成正方形块分给小朋友,目标是找到能切出的最大正方形边长。给定每块巧克力的高度和宽度,程序需确保每个小朋友至少得到一块1x1的巧克力。提供的Java代码实现了这个算法,通过不断调整正方形边长找到最佳答案。
摘要由CSDN通过智能技术生成

题目描述

儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 NN 块巧克力,其中第 i块是H i ×Wi 的方格组成的长方形。为了公平起见,
小明需要从这 NN 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:
形状是正方形,边长是整数;
大小相同;
例如一块 6x5 的巧克力可以切出 6 块 2x2 的巧克力或者 2 块 3x3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?

输入描述

第一行包含两个整数 N,K(1≤N,K≤105 )。
以下 N 行每行包含两个整数 H i ,W i (1≤H i ,W i ≤105 )。
输入保证每位小朋友至少能获得一块 1x1 的巧克力。

输出描述

输出切出的正方形巧克力最大可能的边长。

输入输出样例

示例
输入
2 10
6 5
5 6
输出
2

运行限制

最大运行时间:2s
最大运行内存: 256M

思路:二分法

import java.util.Scanner;

public class Main{
    public static void main(String[] args){
        Scanner sc = new Scanner(System.in);
        int N = sc.nextInt();//共有N快巧克力
        int K = sc.nextInt();//K个小朋友\
        int Hi[] = new int[N];
        int Wi[] = new int[N];
        for(int i = 0; i<N ; i++) {//巧克力边长
            Hi[i] = sc.nextInt();
            Wi[i] = sc.nextInt();
        }
        int min = 1;
        int max = 10000;
        int ans = 0;
        while(min<=max) {//用二分法
            int sum = 0;
            int mid = (max + min)/2;
            for(int i = 0;i<N; i++) {
                sum+=(Hi[i]/mid)*(Wi[i]/mid);
            }
            if(sum<K) {
                max = mid - 1;
            }
            else {
                min = mid + 1;
                ans = mid;
            }
        }
        System.out.println(ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值