敏感词过滤系统在当今的网络环境中起着重要的作用,它能够帮助网站和应用程序有效地检测和过滤掉用户输入中的敏感词,从而维护良好的网络环境和用户体验。本文将介绍一个基于服务器端的 Vivo 敏感词匹配系统的设计和实现,包括算法原理和相应的源代码。
一、算法原理
Vivo 敏感词匹配系统的核心算法基于 Trie 树,它是一种用于高效存储和搜索字符串集合的数据结构。Trie 树的基本思想是利用字符串的公共前缀来节省存储空间和提高搜索效率。
在敏感词匹配系统中,我们首先构建一个 Trie 树,将敏感词库中的敏感词逐个插入到 Trie 树中。每个节点包含一个字符和一个标志位,标志位表示该节点是否为一个敏感词的结尾。例如,如果敏感词库中包含敏感词 “敏感词”,那么 Trie 树中相应的节点路径为 root -> 敏 -> 感 -> 词,最后一个节点标志位为 true。
在用户输入文本时,系统会遍历输入文本的每个字符,并在 Trie 树中匹配字符。如果匹配到了一个节点,系统会继续匹配下一个字符;如果匹配失败,系统会回溯到 Trie 树的根节点重新匹配。当遍历完整个输入文本时,如果存在匹配到的敏感词,系统将给出相应的处理措施,例如替换敏感词或拒绝发布。
二、系统设计
- Trie 树的构建