(转自csdn)

 

对象持续性

      在我写的Java学习之对象序列化(一)中您已经知道了序列化机制的一些含义和如何实现序列化,在本文中我们将深入到该机制的内部看看它到底是怎么工作的!

举个例子来说:

      假设现在写好了两个类,一个Employee(员工类),一个Manager(经理类),接着创建它们的对象,在创建Manager对象时需要为Manager指定一个秘书而秘书也是一个Employee,在这里我们就用现成的Employee对象做Manager的秘书,也就是说需要在Manager中包含一个Employee的对象引用,如下代码:

Employee harry = new Employee("Harry Hacke",.........);  //是员工又是秘书

Manager manager1 = new Manager("Tony Tester",.......);  //经理对象

manager1.setSecretary(harry);   //设置秘书为harry

现在,在内存中实际创建了两个对象,一个Employee,一个Manager而Manager中包含了一个指向Employee对象的引用,是引用而已,当我们把以上这些写入磁盘的时候发生了变化,harry的数据被保存了两次,也就是说我们在Manager中获得了harry对象的完整拷贝,这当然不是我们想看到的,比如我们要给harry加薪,当然不希望还要搜索该对象的其他全部拷贝,换言之我们希望磁盘上的对象布局和内存中的对象布局保持完全的一致。这就是“对象持续性”!

      你可能会想到可以保存“秘书”对象的内存地址,不行的,因为,每一次加载对象都可能使用和原来截然不同的内存地址!

      不过,现在好了,Java解决这个问题的办法就是采用序列化机制,下面是序列化具体的算法:

1.保存到磁盘的所有对象都获得一个序列号(1,2,3等等)

2.当要保存一个对象时,先检查该对象是否已经保存过。

3.如果以前保存过,只需写入“与已经保存的具有序列号x的对象相同”标记;否则,保存该对象。

通过以上的步骤不久解决了“对象持续性”的问题了!

看个例子吧!(在JDK1.4下调试通过)

import java.io.*;
import java.util.*;

public class ObjectRefTest
{
    public static void main(String[] args)
    {
        Employee harry = new Employee("Harry Hacker", 50000);
        Manager manager1 = new Manager("Tony Tester", 80000);
        manager1.setSecretary(harry);
       
        Employee[] staff = new Employee[2];
       
        staff[0] = harry;
        staff[1] = manager1;
        try
        {
            ObjectOutputStream out = new ObjectOutputStream(
                new FileOutputStream("employee.dat"));
            out.writeObject(staff);
            out.close();
           
            ObjectInputStream in = new ObjectInputStream(
                new FileInputStream("employee.dat"));
            Employee[] newStaff = (Employee[])in.readObject();
            in.close();
   
            /**
             *通过harry对象来加薪
             *将在secretary上反映出来
             */
            newStaff[0].raiseSalary(10);
           
            for (int i = 0; i < newStaff.length; i++)
                System.out.println(newStaff[i]);
        }
        catch (Exception e)
        {
            e.printStackTrace();
        }
    }
   
}

class Employee implements Serializable
{
    public Employee() {}
   
    public Employee(String n, double s)
    {
        name = n;
        salary = s;
    }
   
    /**
     *加薪水
     */
    public void raiseSalary(double byPercent)
    {
        double raise = salary * byPercent / 100;
        salary += raise;
    }
   
    public String toString()
    {
        return getClass().getName()
            + "[name = "+ name
            + ",salary = "+ salary
            + "]";
    }
   
    private String name;
    private double salary;
    private Date hireDay;
   
}

class Manager extends Employee
{
    public Manager(String n, double s)
    {
        super(n, s);
        secretary = null;
    }
   
    /**
     *设置秘书
     */
    public void setSecretary(Employee s)
    {
        secretary = s;
    }
   
    public String toString()
    {
        return super.toString()
            + "[secretary = "+ secretary
            + "]";
    }
   
    //secretary代表秘书
    private Employee secretary;
   
}

以上都是序列化默认的行为,实际编程中我们还会遇到许多情况导致序列化的默认行为出错,在下篇中我们将看到如何修改默认的序列化!谢谢阅读!

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值