一文讲通谱域图神经网络:从图信号处理GSP到图卷积网络GCN

本文深入探讨了谱域图神经网络,从图信号处理的基础,如拉普拉斯矩阵及其变形,到图傅里叶变换和图滤波器。重点介绍了图卷积网络GCN,包括它与CNN的联系,以及GCN的性质和潜在问题,如过平滑。文章还提到了GCN在图信号平滑和低通滤波方面的作用。
摘要由CSDN通过智能技术生成

一文讲通谱域图神经网络:从图信号处理GSP到图卷积网络GCN

图信号处理

图G=<V,E>,包含两方面的信息:

一是节点集合 V={…,v_i,…}上带有的各节点信号强度向量x={…,x_i,…},其中x_i是v_i的信号强度;

二是图的结构信息,即点之间的相连关系,使用拉普拉斯矩阵来描述。

拉普拉斯矩阵

拉普拉斯矩阵定义为L=D-A,其中A是图的邻接矩阵,D=diag([…,deg(v_i),…])。

例子:

在这里插入图片描述

拉普拉斯矩阵的意义

图上的梯度在边上的分量:理解为的属性,描述这条边连接的两个节点之间信号强度的变化速度,定义为(注意分量方向与边的方向一致):

g ⃗ i j = x j − x i e ⃗ i j \vec g_{ij} = \frac{x_j-x_i}{\vec e_{ij}} g ij=e ijxjxi
图上的梯度:理解为的属性,认为该点连接的边都是正交的,因此梯度也分开到各个维度,即
g ⃗ i = [ . . , g ⃗ i j , . . ] , ( i , j ) ∈ E \vec g_i = [.., \vec g_{ij} ,..], (i,j)\in E g i=[..,g ij,..],(i,j)E
图上的散度:理解为的属性,描述这个点处流入流出的向量之和,形式上为这些向量的直接加和;

图上的梯度的散度在点上的分量:理解为的属性,将该点处的梯度分量相加,并以边的方向区分流入流出的向量,即
s i = ∑ j g ⃗ i j = ( − 1 ) ∗ ∣ g ⃗ i p ∣ + 1 ∗ ∣ g ⃗ q i ∣ , { ( i , p ) , ( q , i ) } ⊂ E s_i = \sum_j \vec g_{ij} = (-1)*|\vec g_{ip}|+1*|\vec g_{qi}|, \{(i,p),(q,i)\}\subset E si=jg ij=(1)g ip+1g qi,{ (i,p),(q,i)}E
在这里插入图片描述

图上的梯度的散度:理解为的属性,即图上所有点处的散度组成的向量,即
s i g n ( A ) × g ⃗ sign(\mathcal A)\times \vec g sign(A)×

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值