一文讲通谱域图神经网络:从图信号处理GSP到图卷积网络GCN
文章目录
图信号处理
图G=<V,E>,包含两方面的信息:
一是节点集合 V={…,v_i,…}上带有的各节点信号强度向量x={…,x_i,…},其中x_i是v_i的信号强度;
二是图的结构信息,即点之间的相连关系,使用拉普拉斯矩阵来描述。
拉普拉斯矩阵
拉普拉斯矩阵定义为L=D-A,其中A是图的邻接矩阵,D=diag([…,deg(v_i),…])。
例子:
拉普拉斯矩阵的意义
图上的梯度在边上的分量:理解为边的属性,描述这条边连接的两个节点之间信号强度的变化速度,定义为(注意分量方向与边的方向一致):
g ⃗ i j = x j − x i e ⃗ i j \vec g_{ij} = \frac{x_j-x_i}{\vec e_{ij}} gij=eijxj−xi
图上的梯度:理解为点的属性,认为该点连接的边都是正交的,因此梯度也分开到各个维度,即
g ⃗ i = [ . . , g ⃗ i j , . . ] , ( i , j ) ∈ E \vec g_i = [.., \vec g_{ij} ,..], (i,j)\in E gi=[..,gij,..],(i,j)∈E
图上的散度:理解为点的属性,描述这个点处流入流出的向量之和,形式上为这些向量的直接加和;
图上的梯度的散度在点上的分量:理解为点的属性,将该点处的梯度分量相加,并以边的方向区分流入流出的向量,即
s i = ∑ j g ⃗ i j = ( − 1 ) ∗ ∣ g ⃗ i p ∣ + 1 ∗ ∣ g ⃗ q i ∣ , { ( i , p ) , ( q , i ) } ⊂ E s_i = \sum_j \vec g_{ij} = (-1)*|\vec g_{ip}|+1*|\vec g_{qi}|, \{(i,p),(q,i)\}\subset E si=j∑gij=(−1)∗∣gip∣+1∗∣gqi∣,{
(i,p),(q,i)}⊂E
图上的梯度的散度:理解为图的属性,即图上所有点处的散度组成的向量,即
s i g n ( A ) × g ⃗ sign(\mathcal A)\times \vec g sign(A)×