BZOJ2565: 最长双回文串 manacher算法

2565: 最长双回文串

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 1532   Solved: 792

Description

顺序和逆序读起来完全一样的串叫做回文串。比如acbca是回文串,而abc不是(abc的顺序为“abc”,逆序为“cba”,不相同)。
输入长度为n的串S,求S的最长双回文子串T,即可将T分为两部分XY,(|X|,|Y|≥1)且XY都是回文串。

Input

一行由小写英文字母组成的字符串S

Output

一行一个整数,表示最长双回文子串的长度。

Sample Input

baacaabbacabb

Sample Output

12

HINT

样例说明

从第二个字符开始的字符串aacaabbacabb可分为aacaa与bbacabb两部分,且两者都是回文串。

对于100%的数据,2≤|S|≤10^5


2015.4.25新加数据一组

题目大意:给定一个字符串,求字符串中最长的双回文串,所谓双回文串就是可以将其分成两部分,这两部分都是一个回文串

题解:对于每一个点有一个f[i],记录以i为结尾的最长的回文串的中点坐标,然后具体怎么计算看一下代码就ok,有点儿巧妙...
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=200005;
char c[N],s[N];
int f[N],p[N],ans;
void manacher()
{
	int len=strlen(s);
	for(int i=0;i<len;i++)
	{
		c[i*2+1]='#';
		c[i*2+2]=s[i];
	}
	c[0]='$',c[len*2+2]='$';
	c[len*2+1]='#';
	len=len*2+1;
	int mx=0,mi=0;
	for(int i=1;i<=len;i++)
	{
		if(mx<=i) p[i]=1;
		else p[i]=min(p[mi*2-i],mx-i);
		if(!f[i]) f[i]=i;
		while(c[i+p[i]]==c[i-p[i]])
		{
			if(!f[i+p[i]]) f[i+p[i]]=i;
		    p[i]++;
		}
		if(p[i]+i>mx) mx=i+p[i],mi=i;
	}
	for(int i=1;i<=len;i++) ans=max(ans,i-f[i-p[i]]);
	printf("%d",ans);
}
int main()
{
	scanf("%s",s);
	manacher();
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值