已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7] 在变化后可能得到:
若旋转 4 次,则可以得到 [4,5,6,7,0,1,2]
若旋转 7 次,则可以得到 [0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], …, a[n-1]] 旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], …, a[n-2]] 。
给你一个元素值 互不相同 的数组 nums ,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n) 的算法解决此问题
肯定是使用二分法比较好,将mid与right毕竟比较.
如果nums[mid]<nums[right]则说明mid+1~right的元素肯定不是所以可以更新right=mid
反之,则说明left~mid之间的元素肯定不是,可以更新left=mid+1
上面的图转自leetcode
public class Solution086 {
public static void main(String[] args) {
int[] nums = new int[]{3, 4, 5, 1, 2};
System.out.println(findMin(nums));
}
public static int findMin(int[] nums) {
int left = 0, right = nums.length - 1;
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] < nums[right]) {
right = mid;
} else {
left = mid + 1;
}
}
return nums[left];
}
}