树可以看成是一个连通且 无环 的 无向 图。
给定往一棵 n 个节点 (节点值 1~n) 的树中添加一条边后的图。添加的边的两个顶点包含在 1 到 n 中间,且这条附加的边不属于树中已存在的边。图的信息记录于长度为 n 的二维数组 edges ,edges[i] = [ai, bi] 表示图中在 ai 和 bi 之间存在一条边。
请找出一条可以删去的边,删除后可使得剩余部分是一个有着 n 个节点的树。如果有多个答案,则返回数组 edges 中最后出现的边。
其实就是判断是都有环出现,如果有环出现,就返回最后那条导致环的有向边。
这里直接使用并查集即可初始时,每个节点都属于不同的连通分量。遍历每一条边,判断这条边连接的两个顶点是否属于相同的连通分量。不属于的话既可以进行合并,如果属于的话说明出现环,即可返回该有向边!
public int[] findRedundantConnection(int[][] edges) {
int n = edges.length;
int[] parent = new int[n];
for (int i = 0; i < n; i++) parent[i] = i;
for (int[] edge : edges) {
int node1 = edge[0];
int node2 = edge[1];
if (findParent(parent, node1) != findParent(parent, node2)) {
union(parent, node1, node2);
} else {
//两个父节点相同 说明有环
return edge;
}
}
return new int[0];
}
//将index1和index2进行合并
public void union(int[] parnet, int index1, int index2) {
parnet[findParent(parnet, index1)] = findParent(parnet, index2);
}
//查找index的父节点
public int findParent(int[] parent, int index) {
if (parent[index] != index) {
index = findParent(parent, parent[index]);
}
return index;
}