如何用AI工具快速分析系统进程?PCHunter替代方案

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
    开发一个Windows系统进程分析工具,具有以下功能:1) 实时显示所有运行进程列表,包括PID、CPU/内存占用;2) 进程详细信息查看(路径、命令行参数等);3) 进程终止功能;4) 可疑进程检测(基于常见恶意进程特征);5) 简洁的GUI界面。使用Python开发,提供完整的代码和可执行文件打包方案。
  3. 点击'项目生成'按钮,等待项目生成完整后预览效果

示例图片

最近需要开发一个类似PCHunter的Windows系统进程分析工具,但手动编写所有功能耗时较长。尝试用AI驱动的在线编程平台后,发现可以通过自然语言描述快速生成代码,大幅提升开发效率。下面分享具体实现过程和关键点。

1. 工具功能规划与AI辅助设计

首先明确工具需要实现的五大核心功能:实时进程列表展示、详细信息查看、进程终止、可疑进程检测以及GUI界面。通过向AI平台输入这些需求描述,快速获得了基础代码框架建议。

  • 实时进程列表:需要获取系统所有运行进程的PID、名称、CPU和内存占用率
  • 详细信息:包含进程路径、启动命令行参数、父进程等扩展信息
  • 进程终止:提供强制结束指定进程的能力
  • 可疑检测:基于常见恶意进程特征(如隐藏进程、异常路径)进行标记
  • GUI界面:采用简洁的表格展示,包含基本操作按钮

2. 关键技术实现要点

  1. 进程信息获取:使用Python的psutil库可以方便地获取系统进程信息。AI建议的代码自动处理了不同Windows版本兼容性问题。

  2. 实时更新机制:通过定时刷新进程列表(如每2秒),配合线程处理避免界面卡顿。AI生成了完整的线程安全实现方案。

  3. 可疑进程检测:基于以下特征进行判断:

  4. 进程路径位于临时目录
  5. 无有效数字签名
  6. 与已知恶意进程名匹配
  7. CPU占用异常高但无对应窗口

  8. GUI界面开发:采用PySimpleGUI库快速构建,AI生成的界面代码已包含:

  9. 进程列表表格
  10. 详情展示区域
  11. 终止进程按钮
  12. 可疑进程高亮显示

  13. 打包部署:使用PyInstaller将Python脚本打包为独立exe文件,方便在没有Python环境的机器上运行。AI提供了完整的打包参数配置建议。

3. 开发过程中的经验总结

  • AI辅助优势:描述需求后,80%的基础代码可由AI生成,主要节省了API查阅和样板代码编写时间

  • 调试技巧

  • 进程权限问题:需要以管理员身份运行才能获取完整信息
  • 性能优化:对频繁更新的数据采用缓存机制
  • 异常处理:完善进程终止失败等情况的错误提示

  • 功能扩展方向

  • 增加进程启动监控
  • 实现进程依赖关系图
  • 添加网络连接查看功能

整个开发过程在InsCode(快马)平台上完成,其内置的AI辅助和实时预览功能让调试非常高效。特别是将项目一键部署为可访问的Web应用进行测试的功能,省去了本地环境配置的麻烦。

示例图片

对于需要快速原型开发的工具类项目,这种AI驱动的开发方式确实能事半功倍。从需求描述到可运行版本,传统方式可能需要2-3天,而借助AI平台不到半天就完成了核心功能。

快速体验

  1. 打开 InsCode(快马)平台 https://www.inscode.net
  2. 输入框内输入如下内容:
    开发一个Windows系统进程分析工具,具有以下功能:1) 实时显示所有运行进程列表,包括PID、CPU/内存占用;2) 进程详细信息查看(路径、命令行参数等);3) 进程终止功能;4) 可疑进程检测(基于常见恶意进程特征);5) 简洁的GUI界面。使用Python开发,提供完整的代码和可执行文件打包方案。
  3. 点击'项目生成'按钮,等待项目生成完整后预览效果

创作声明:本文部分内容由AI辅助生成(AIGC),仅供参考

通过短时倒谱(Cepstrogram)计算进行时-倒频分析研究(Matlab代码实现)内容概要:本文主要介绍了一项关于短时倒谱(Cepstrogram)计算在时-倒频分析中的研究,并提供了相应的Matlab代码实现。通过短时倒谱分析方法,能够有效提取信号在时间倒频率域的特征,适用于语音、机械振动、生物医学等领域的信号处理故障诊断。文中阐述了倒谱分析的基本原理、短时倒谱的计算流程及其在实际工程中的应用价值,展示了如何利用Matlab进行时-倒频图的可视化分析,帮助研究人员深入理解非平稳信号的周期性成分谐波结构。; 适合人群:具备一定信号处理基础,熟悉Matlab编程,从事电子信息、机械工程、生物医学或通信等相关领域科研工作的研究生、工程师及科研人员。; 使用场景及目标:①掌握倒谱分析短时倒谱的基本理论及其傅里叶变换的关系;②学习如何用Matlab实现Cepstrogram并应用于实际信号的周期性特征提取故障诊断;③为语音识别、机械设备状态监测、振动信号分析等研究提供技术支持方法参考; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,先理解倒谱的基本概念再逐步实现短时倒谱分析,注意参数设置如窗长、重叠率等对结果的影响,同时可将该方法其他时频分析方法(如STFT、小波变换)进行对比,以提升对信号特征的理解能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ObsidianRaven13

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值