- 左下方-右上方遍历
public static int[] findOrder(int[][] mat) {
int m = mat.length;
int n = mat[0].length;
int[] result = new int[m*n];
int index = 0;
for(int i =0; i < m+n-1; i++){
for(int j = Math.min(i, m-1); j >= Math.max(0, i-n+1); j--){
result[index++] = mat[j][i-j];
}
}
return result;
}
矩阵的对角线总数为m+n-1,所以需要m+n-1次遍历,1 <= i <= m+n-1
第i次遍历的元素个数为m+n-2-i,
其中m是行数,n是列数。
边界条件的确定:
假设start是起始索引,end是结束索引,
恒成立: m-1 >= start >= end >= 0
进一步确定start和end的范围。因为总是从最左下方开始遍历,所以当i <= m - 1时,start = i,当 i > m - 1时,i = m - 1,所以start = min(i, m-1)
同理,因为总是从最右上方结束,观察到当 i <= m - 1时,end = 0,当i > m - 1时,end > 0, 此时end的值可以由[起始索引]-[该次遍历的元素个数]得出,即end = m - 1 - (m + n - 2 - i) = i - n + 1,所以end = max(0, i -n+1)
由于元素沿对角线对称,所以遍历的元素总是mat[j][i-j]。
- 右上方-左下方遍历
public static int[] findOrder(int[][] mat) {
int m = mat.length;
int n = mat[0].length;
int[] result = new int[m*n];
int index = 0;
for(int i =0; i < m+n-1; i++){
for(int j = Math.max(0, i-n+1); j <= Math.min(i, m-1); j++){
result[index++] = mat[j][i-j];
}
}
return result;
}
同理上一种情况,当然也可以通过先沿对角线翻转元素再用左下方-右上方的方法实现。
- 左下方-右上方交替遍历
public static int[] findOrder(int[][] mat) {
int m = mat.length;
int n = mat[0].length;
int[] result = new int[m*n];
int index = 0;
for(int i =0; i < m+n-1; i++){
if(i % 2 == 0){
for(int j = Math.min(i, m-1); j >= Math.max(0, i-n+1); j--){
result[index++] = mat[j][i-j];
}
}
else{
for(int j = Math.max(0, i-n+1); j <= Math.min(i, m-1); j++){
result[index++] = mat[j][i-j];
}
}
}
return result;
}
对于交替遍历的问题,只需将遍历次数分为奇偶数进行讨论即可。也可以将特定对角线上的元素沿对角线翻转后再用同一种方法。
for(int i = 0; i < m; i++){
if(i % 2 != 0){
//沿左上-右下对角线翻转
for (int j = 0; j < i; j++){
int temp = mat[i][j];
mat[i][j] = mat[j][i];
mat[j][i] = temp;
}
}
}
for(int i =0; i < m+n-1; i++){
for(int j = Math.min(i, m-1); j >= Math.max(0, i-n+1); j--){
result[index++] = mat[j][i-j];
}
}
return result;
对于其他遍历方式,比如说从左上方-右下方,可以先通过将原二维数组元素垂直翻转(沿水平轴),再使用同样的方法即可实现。注意此时的遍历起点是左下角,如果需要从右上角开始遍历,可以在垂直翻转后再沿右上-左下为对称轴翻转数组元素(实际上相当于直接将原数组逆时针旋转90°)。
逆时针旋转90°:先左上-右下对角线翻转,再水平翻转
顺时针旋转90°:先水平翻转,再左上-右下对角线翻转
但是这种翻转数组的方法缺点是会破会原始数据,需要new一个新的二维数组进行赋值。