[Deep Learning] 反向传播算法(Backpropagation Algorithm)

本文详细介绍了反向传播算法,通过链式法则解释了如何计算神经网络的权重梯度。首先,阐述了链式法则在两种情况下的应用,接着通过实例详细解释了反向传播的过程,包括前向传播计算∂ωi∂zi和反向传播计算∂z∂l,最后总结了反向传播算法的重要性和工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Chain Rule(链式法则)


Case 1

如果有:

y = g ( x )        z = h ( y ) y = g(x)\ \ \ \ \ \ z = h(y) y=g(x)      z=h(y)

那么“变量影响链”就有:

Δ x → Δ y Δ z \Delta x\rightarrow \Delta y \Delta z ΔxΔyΔz

因此就有:

d z d x = d z d y d y d x \frac{d z}{d x} = \frac{d z}{d y}\frac{d y}{d x} dxdz=dydzdxdy

Case 2

如果有:

y = g ( s )        y = h ( s )        z = k ( x , y ) y = g(s)\ \ \ \ \ \ y = h(s)\ \ \ \ \ \ z=k(x,y) y=g(s)      y=h(s)      z=k(x,y)

那么“变量影响链”就有:

因此就有:

d z d s = ∂ z ∂ x d x d s + ∂ z ∂ y d y d s \frac{d z}{d s} = \frac{\partial z}{\partial x}\frac{d x}{ds} + \frac{\partial z}{\partial y}\frac{d y}{ds} dsdz=xzdsdx+yzdsdy

Backpropagation(反向传播算法)——实例讲解


定义

反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。 该方法对网络中所有权重计算损失函数的梯度。 这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)——维基百科

说明

假设现在有N个样本数据,那么实际上损失函数可以表示为:

L ( θ ) = ∑ n = 1 N l n ( θ ) L(\theta) = \sum_{n=1}^Nl^n(\theta) L(θ)=n=1Nln(θ)

其中 θ \theta θ为需要学习的参数。

那么现在 ω \omega ω L L L进行偏微分,实际上是对每个样本数据的损失函数 l ( θ ) l(\theta) l(θ)进行偏微分后再求和:

∂ L ( θ ) ∂ ω = ∑ n = 1 N ∂ l n ( θ ) ∂ ω \frac{\partial L(\theta)}{\partial \omega} = \sum_{n=1}^N\frac{\partial l^n(\theta)}{\partial \omega} ωL(θ)=n=1Nωln(θ)

用代数表示为:

z 1 = ω 11 x 1 + ω 12 x 2 + b 1             a 1 = σ ( z 1 ) z_1 = \omega_{11}x_1 + \omega_{12}x_2 + b_1 \ \ \ \ \ \ \ \ \ \ \ a_1 = \sigma(z_1) z1=ω11x1+ω12x2+b1           a1=σ(z1)

z 2 = ω 21 x 1 + ω 22 x 2 + b 2             a 2 = σ ( z 2 ) z_2 = \omega_{21}x_1 + \omega_{22}x_2 + b_2 \ \ \ \ \ \ \ \ \ \ \ a_2 = \sigma(z_2) z2=ω21x1+ω22x2+b2           a2=σ(z2)

z 3 = ω 31 a 1 + ω 32 a 2 + b 3             a 3 = σ ( z 3 ) z_3 = \omega_{31}a_1 + \omega_{32}a_2 + b_3 \ \ \ \ \ \ \ \ \ \ \ a_3 = \sigma(z_3) z3=ω31a1+ω32a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值