Spark存储分析 - Shuffle分析

Shuffle简介

在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。Spark作为MapReduce框架的一种实现,自然也实现了shuffle的逻辑,本文就深入研究Spark的shuffle是如何实现的,有什么优缺点。

 

Shuffle的写操作

Spark的shuffle过程类似于MapReduce的shuffle过程,在shuffle阶段,可以对ShuffleMapTask的结果进行合并、排序、持久化。

Spark的shuffle写操作有两种类型,一种是没有排序的shuffle写操作,一种是有排序的shuffle写操作。

不排序的shuffle写操作

在Spark1.4以前,默认使用基于Hash的shuffle。

由于不要求数据有序,shuffle write 的任务很简单:将数据 partition 好,并持久化。之所以要持久化,一方面是要减少内存存储空间压力,另一方面也是为了 fault-tolerance。

shuffle write 的任务很简单,那么实现也很简单:将 shuffle write 的处理逻辑加入到 ShuffleMapStage(ShuffleMapTask 所在的 stage) 的最后,该 stage 的 final RDD 每输出一个 record 就将其 partition 并持久化。图示如下:

 

上图有 4 个 ShuffleMapTask 要在同一个 worker node 上运行,CPU core 数为 2,可以同时运行两个 task。每个 task 的执行结果(该 stage 的 finalRDD 中某个 partition 包含的 records)被逐一写到本地磁盘上。每个 task 包含 R 个缓冲区,R = reducer 个数(也就是下一个 stage 中 task 的个数),缓冲区被称为 bucket,其大小为spark.shuffle.file.buffer.kb ,默认是 32KB(Spark 1.1 版本以前是 100KB)。

 

ShuffleMapTask 的执行过程很简单:先利用 pipeline 计算得到 finalRDD 中对应 partition 的 records。每得到一个 record 就将其送到对应的 bucket 里,具体是哪个 bucket 由partitioner.partition(record.getKey()))决定。每个 bucket 里面的数据会不断被写到本地磁盘上,形成一个 ShuffleBlockFile,或者简称 FileSegment。之后的 reducer 会去 fetch 属于自己的 FileSegment,进入 shuffle read 阶段。

 

这样的实现很简单,但有几个问题:

  1. 产生的 FileSegment 过多。每个 ShuffleMapTask 产生 R(reducer 个数)个 FileSegment,M 个 ShuffleMapTask 就会产生 M * R 个文件。一般 Spark job 的 M 和 R 都很大,因此磁盘上会存在大量的数据文件。
  1. 缓冲区占用内存空间大。每个 ShuffleMapTask 需要开 R 个 bucket,M 个 ShuffleMapTask 就会产生 M R 个 bucket。虽然一个 ShuffleMapTask 结束后,对应的缓冲区可以被回收,但一个 worker node 上同时存在的 bucket 个数可以达到 cores R 个(一般 worker 同时可以运行 cores 个 ShuffleMapTask),占用的内存空间也就达到了cores * R * 32 KB。对于 8 核 1000 个 reducer 来说,占用内存就是 256MB。

目前来看,第二个问题还没有好的方法解决,因为写磁盘终究是要开缓冲区的,缓冲区太小会影响 IO 速度。但第一个问题有一些方法去解决,下面介绍已经在 Spark 里面实现的 FileConsolidation 方法。先上图:

可以明显看出,在一个 core 上连续执行的 ShuffleMapTasks 可以共用一个输出文件 ShuffleFile。先执行完的 ShuffleMapTask 形成 ShuffleBlock i,后执行的 ShuffleMapTask 可以将输出数据直接追加到 ShuffleBlock i 后面,形成 ShuffleBlock i',每个 ShuffleBlock 被称为 FileSegment。下一个 stage 的 reducer 只需要 fetch 整个 ShuffleFile 就行了。这样,每个 worker 持有的文件数降为 cores * R。FileConsolidation 功能可以通过spark.shuffle.consolidateFiles=true来开启。

排序的shuffle写操作

Spark1.4以后,增加了基于排序的shuffle,来解决shuffle过程中产生过多的文件和Writer Handler的缓存开销过大的问题。

在Sort Based Shuffle中,每个Shuffle Map Task不会为后续的每个任务创建单独的文件,而是会将所有结果写到同一个文件中,对应生成一个index索引文件。

shuffle写操作示意图

对于Shuffle的写操作,主要是在SortShuffleWriter的write方法。在该方法中,首先判断输出结果在Map端是否需要合并(Combine), 如果需要合并,则外部排序中进行聚合并排序;如果不需要,则外部排序中不进行聚合和排序,例如sortByKey操作在Reduce端会进行聚合并排序。确认外部排序方式后,在外部排序中将使用PartitionedAppendOnlyMap来存放数据,当排序中的Map占用的内存已经超越了使用的阈值,则将Map中的内容溢写到磁盘中,每一次溢写产生一个不同的文件,当所有数据处理完毕后,在外部排序中有可能一部分计算结果在内存中,另一部分计算结果溢写到一或多个文件中,这时通过merge操作将内存和spill文件中的内容合并整到一个文件中。

SortShuffleWriter的write方法代码如下:

override def write(records: Iterator[Product2[K, V]]): Unit = {
    sorter = if (dep.mapSideCombine) {
      require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!")
      // 外排序中进行聚合
      new ExternalSorter[K, V, C](
        context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)
    } else {
      // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't
      // care whether the keys get sorted in each partition; that will be done on the reduce side
      // if the operation being run is sortByKey.
      // 外排序中不进行聚合
      new ExternalSorter[K, V, V](
        context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer)
    }
    // 根据获取的排序方式,对数据进行排序并写入到内存缓冲区中。如果排序中的Map占用的内存
    // 已经超越来使用的阈值,则将Map中的内容溢写到磁盘,每次溢写产生一个不同的文件
    sorter.insertAll(records)

    // Don't bother including the time to open the merged output file in the shuffle write time,
    // because it just opens a single file, so is typically too fast to measure accurately
    // (see SPARK-3570).
    // 通过Shuffle编号和Map编号获取该数据文件
    val output = shuffleBlockResolver.getDataFile(dep.shuffleId, mapId)
    val tmp = Utils.tempFileWith(output)
    try {
      // 通过Shuffle编号和Map编号获取ShuffleBlock编号
      val blockId = ShuffleBlockId(dep.shuffleId, mapId, IndexShuffleBlockResolver.NOOP_REDUCE_ID)
      // 在外排序中有可能一部分计算结果在内存中,另一部分计算结果溢写到一个或多个文件之中
      // 这时通过merge操作将内存和spill文件中的内容合并整到一个文件里
      val partitionLengths = sorter.writePartitionedFile(blockId, tmp)
      // 创建索引文件,将每个partition的在数据文件中的起始位置和结束位置写入到索引文件
      shuffleBlockResolver.writeIndexFileAndCommit(dep.shuffleId, mapId, partitionLengths, tmp)
      // 将元数据信息写入到MapStatus中,后续的任务可以通过该MapStatus得到处理结果信息
      mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths)
    } finally {
      if (tmp.exists() && !tmp.delete()) {
        logError(s"Error while deleting temp file ${tmp.getAbsolutePath}")
      }
    }
  }

在ExternalSorter的insterAll方法中,先判断是否需要进行聚合(Aggregation),如果需要,则根据键值进行合并(Combine), 然后把这些数据写入到内存缓冲区中,如果排序中Map占用的内存超过了阈值,则将Map中的内容溢写到磁盘中,每一次溢写产生一个不同的文件。如果不需要聚合,把数据排序写到内存缓冲区。

def insertAll(records: Iterator[Product2[K, V]]): Unit = {
    // 是否需要聚合
    val shouldCombine = aggregator.isDefined

    if (shouldCombine) {
      // 如果需要聚合,则使用PartitionedAppendOnlyMap根据键值进行合并
      val mergeValue = aggregator.get.mergeValue
      val createCombiner = aggregator.get.createCombiner
      var kv: Product2[K, V] = null
      val update = (hadValue: Boolean, oldValue: C) => {
        if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)
      }
      while (records.hasNext) {
        addElementsRead()
        kv = records.next()
        map.changeValue((getPartition(kv._1), kv._1), update)
        maybeSpillCollection(usingMap = true)
      }
    } else {
      // Stick values into our buffer
      // 不需要聚合,对数据进行排序写入到内存缓冲区中
      while (records.hasNext) {
        addElementsRead()
        val kv = records.next()
        buffer.insert(getPartition(kv._1), kv._1, kv._2.asInstanceOf[C])
        maybeSpillCollection(usingMap = false)
      }
    }
  }

 

Shuffle的读操作

不排序的shuffle读操作

 

先看一张包含 ShuffleDependency 的物理执行图,来自 reduceByKey:

 

 

 

很自然地,要计算 ShuffleRDD 中的数据,必须先把 MapPartitionsRDD 中的数据 fetch 过来。那么问题就来了:

 

  • 在什么时候 fetch,parent stage 中的一个 ShuffleMapTask 执行完还是等全部 ShuffleMapTasks 执行完?
  • 边 fetch 边处理还是一次性 fetch 完再处理?
  • fetch 来的数据存放到哪里?
  • 怎么获得要 fetch 的数据的存放位置?
  • 在什么时候 fetch?当 parent stage 的所有 ShuffleMapTasks 结束后再 fetch。理论上讲,一个 ShuffleMapTask 结束后就可以 fetch,但是为了迎合 stage 的概念(即一个 stage 如果其 parent stages 没有执行完,自己是不能被提交执行的),还是选择全部 ShuffleMapTasks 执行完再去 fetch。因为 fetch 来的 FileSegments 要先在内存做缓冲,所以一次 fetch 的 FileSegments 总大小不能太大。Spark 规定这个缓冲界限不能超过 spark.reducer.maxMbInFlight,这里用 softBuffer 表示,默认大小为 48MB。一个 softBuffer 里面一般包含多个 FileSegment,但如果某个 FileSegment 特别大的话,这一个就可以填满甚至超过 softBuffer 的界限。

解决问题:

  • 边 fetch 边处理还是一次性 fetch 完再处理?边 fetch 边处理。本质上,MapReduce shuffle 阶段就是边 fetch 边使用 combine() 进行处理,只是 combine() 处理的是部分数据。MapReduce 为了让进入 reduce() 的 records 有序,必须等到全部数据都 shuffle-sort 后再开始 reduce()。因为 Spark 不要求 shuffle 后的数据全局有序,因此没必要等到全部数据 shuffle 完成后再处理。那么如何实现边 shuffle 边处理,而且流入的 records 是无序的?答案是使用可以 aggregate 的数据结构,比如 HashMap。每 shuffle 得到(从缓冲的 FileSegment 中 deserialize 出来)一个 \ record,直接将其放进 HashMap 里面。如果该 HashMap 已经存在相应的 Key,那么直接进行 aggregate 也就是 func(hashMap.get(Key), Value),比如上面 WordCount 例子中的 func 就是 hashMap.get(Key) + Value,并将 func 的结果重新 put(key) 到 HashMap 中去。这个 func 功能上相当于 reduce(),但实际处理数据的方式与 MapReduce reduce() 有差别,差别相当于下面两段程序的差别。

      // MapReduce
      reduce(K key, Iterable<V> values) { 
          result = process(key, values)
          return result    
      }
    
      // Spark
      reduce(K key, Iterable<V> values) {
          result = null 
          for (V value : values) 
              result  = func(result, value)
          return result
      }
    

    MapReduce 可以在 process 函数里面可以定义任何数据结构,也可以将部分或全部的 values 都 cache 后再进行处理,非常灵活。而 Spark 中的 func 的输入参数是固定的,一个是上一个 record 的处理结果,另一个是当前读入的 record,它们经过 func 处理后的结果被下一个 record 处理时使用。因此一些算法比如求平均数,在 process 里面很好实现,直接sum(values)/values.length,而在 Spark 中 func 可以实现sum(values),但不好实现/values.length。更多的 func 将会在下面的章节细致分析。

 

  • fetch 来的数据存放到哪里?刚 fetch 来的 FileSegment 存放在 softBuffer 缓冲区,经过处理后的数据放在内存 + 磁盘上。这里我们主要讨论处理后的数据,可以灵活设置这些数据是“只用内存”还是“内存+磁盘”。如果spark.shuffle.spill = false就只用内存。内存使用的是AppendOnlyMap ,类似 Java 的HashMap,内存+磁盘使用的是ExternalAppendOnlyMap,如果内存空间不足时,ExternalAppendOnlyMap可以将 \ records 进行 sort 后 spill 到磁盘上,等到需要它们的时候再进行归并,后面会详解。使用“内存+磁盘”的一个主要问题就是如何在两者之间取得平衡?在 Hadoop MapReduce 中,默认将 reducer 的 70% 的内存空间用于存放 shuffle 来的数据,等到这个空间利用率达到 66% 的时候就开始 merge-combine()-spill。在 Spark 中,也适用同样的策略,一旦 ExternalAppendOnlyMap 达到一个阈值就开始 spill,具体细节下面会讨论。
  • 怎么获得要 fetch 的数据的存放位置?在上一章讨论物理执行图中的 stage 划分的时候,我们强调 “一个 ShuffleMapStage 形成后,会将该 stage 最后一个 final RDD 注册到 MapOutputTrackerMaster.registerShuffle(shuffleId, rdd.partitions.size),这一步很重要,因为 shuffle 过程需要 MapOutputTrackerMaster 来指示 ShuffleMapTask 输出数据的位置”。因此,reducer 在 shuffle 的时候是要去 driver 里面的 MapOutputTrackerMaster 询问 ShuffleMapTask 输出的数据位置的。每个 ShuffleMapTask 完成时会将 FileSegment 的存储位置信息汇报给 MapOutputTrackerMaster。

排序的shuffle读操作

  1. 在SparkEnv启动时,会对ShuffleManage、BlockManager和MapOutputTracker等实例化。ShuffleManager配置项有SortShuffleManager和自定义的ShuffleManager两种,SortShuffleManager实例化BlockStoreShuffleReader,持有的实例是IndexShuffleBlockResolver实例。
  2. 在BlockStoreShuffleReader的read方法中,调用mapOutputTracker的getMapSizesByExecutorId方法,由Executor的MapOutputTrackerWorker发送获取结果状态的GetMapOutputStatuses消息给Driver端的MapOutputTrackerMaster,请求获取上游Shuffle输出结果对应的MapStatus,其中存放了结果数据信息,也就是我们之前在Spark作业执行中介绍的ShuffleMapTask执行结果元信息。
  3. 知道Shuffle结果的位置信息后,对这些位置进行筛选,判断是从本地还是远程获取这些数据。如果是本地直接调用BlockManager的getBlockData方法,在读取数据的时候会根据写入方式的不同采取不同的ShuffleBlockResolver读取;如果是在远程节点上,需要通过Netty网络方式读取数据。在远程读取的时候会采用多线程的方式进行读取,一般来说,会启动5个线程到5个节点进行读取数据,每次请求的数据大小不回超过系统设置的1/5,该大小由spark.reducer.maxSizeInFlight配置项进行设置,默认情况该配置为48MB。
  4. 读取数据后,判断ShuffleDependency是否定义聚合(Aggregation), 如果需要,则根据键值进行聚合。在上游ShuffleMapTask已经做了合并,则在合并数据的基础上做键值聚合。待数据处理完毕后,使用外部排序(ExternalSorter)对数据进行排序并放入存储中。

源码:

(1)Shuffle读的起点是由ShuffledRDD.computer发起的,在该方法中会调用ShuffleManager的getReader方法,在前面我们已经知道Sort Based Shuffle使用的是BlockStoreShuffleReader的read方式。

// ResultTask或者ShuffleMapTask,在执行到ShuffledRDD时
// 会调用compute方法来计算partition的数据
override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {
  val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]
  // 获取Reader(BlockStoreShuffleReader),拉取shuffleMapTask/ResultTask,需要聚合的数据
  SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)
    .read()
    .asInstanceOf[Iterator[(K, C)]]
}

 

(2)在BlockStoreShuffleReader的read方法里先实例化ShuffleBlockFetcherIterator,在该实例化过程中,通过MapOutputTracker的getMapSizeByExecutorId获取上游ShuffleMapTask输出的元数据。先尝试在本地的mapStatus获取,如果获取不到,则通过RPC通行框架,发送消息给MapOutputTrackerMaster,
请求获取该ShuffleMapTask输出数据的元数据,获取这些元数据转换成Seq[(BlockManagerId, Seq[(BlockId, Long)])]的序列。在这个序列中的元素包括两部分信息,BlockManagerId可以定位数据所处的Executor,而Seq[(BlockId,Long)]可以定位Executor的数据块编号和获取数据的大小。

override def read(): Iterator[Product2[K, C]] = {
    // ShuffleBlockFetcherIterator根据得到的地理位置信息,通过BlockManager去远程的
    // ShuffleMapTask所在节点的blockManager去拉取数据
    val blockFetcherItr = new ShuffleBlockFetcherIterator(context,blockManager.shuffleClient,blockManager,
      // 通过MapOutputTracker获取上游的ShuffleMapTask输出数据的元数据,
      // 先尝试从本地获取,获取不到,通过RPC发送消息给MapOutputTrackerMaster,获取元数据
      mapOutputTracker.getMapSizesByExecutorId(handle.shuffleId, startPartition, endPartition),
      // Note: we use getSizeAsMb when no suffix is provided for backwards compatibility
      SparkEnv.get.conf.getSizeAsMb("spark.reducer.maxSizeInFlight", "48m") * 1024 * 1024,
      SparkEnv.get.conf.getInt("spark.reducer.maxReqsInFlight", Int.MaxValue))
    ...
  }

(3)获取读取数据位置信息后,返回到ShuffleBlockFetcherIterator的initalize方法,该方法是Shuffle读的核心代码所在。

private[this] def initialize(): Unit = {
    // Add a task completion callback (called in both success case and failure case) to cleanup.
    context.addTaskCompletionListener(_ => cleanup())

    // Split local and remote blocks. 切分本地和远程block
    // 对获取数据位置的元数据进行分区,区分为本地节点还是远程节点
    val remoteRequests = splitLocalRemoteBlocks()
    // Add the remote requests into our queue in a random order
    fetchRequests ++= Utils.randomize(remoteRequests)
    assert ((0 == reqsInFlight) == (0 == bytesInFlight),
      "expected reqsInFlight = 0 but found reqsInFlight = " + reqsInFlight +
      ", expected bytesInFlight = 0 but found bytesInFlight = " + bytesInFlight)

    // Send out initial requests for blocks, up to our maxBytesInFlight
    // 对于远程节点数据,使用Netty网络方式读取
    fetchUpToMaxBytes()

    val numFetches = remoteRequests.size - fetchRequests.size
    logInfo("Started " + numFetches + " remote fetches in" + Utils.getUsedTimeMs(startTime))

    // Get Local Blocks
    // 对于本地数据,sort Based Shuffle使用的是IndexShuffleBlockResolver的getBlockData方法获取数据
    fetchLocalBlocks()
    logDebug("Got local blocks in " + Utils.getUsedTimeMs(startTime))
  }

划分本地节点还是远程节点的splitLocalRemoteBlocks方法中划分数据读取方式:

private[this] def splitLocalRemoteBlocks(): ArrayBuffer[FetchRequest] = {
    // 设置每次请求的大小不超过maxBytesInFlight的1/5,该阈值由spark.reducer.maxSizeInFlight配置,默认48MB
    val targetRequestSize = math.max(maxBytesInFlight / 5, 1L)
    logDebug("maxBytesInFlight: " + maxBytesInFlight + ", targetRequestSize: " + targetRequestSize)

    // Split local and remote blocks. Remote blocks are further split into FetchRequests of size
    // at most maxBytesInFlight in order to limit the amount of data in flight.
    val remoteRequests = new ArrayBuffer[FetchRequest]

    // Tracks total number of blocks (including zero sized blocks)
    var totalBlocks = 0
    for ((address, blockInfos) <- blocksByAddress) {
      totalBlocks += blockInfos.size
      if (address.executorId == blockManager.blockManagerId.executorId) {
        // 当数据和所在BlockManager在一个节点时,把该信息加入到localBlocks列表中,
        // 需要过滤大小为0的数据块
        localBlocks ++= blockInfos.filter(_._2 != 0).map(_._1)
        numBlocksToFetch += localBlocks.size
      } else {
        val iterator = blockInfos.iterator
        var curRequestSize = 0L
        var curBlocks = new ArrayBuffer[(BlockId, Long)]
        while (iterator.hasNext) {
          val (blockId, size) = iterator.next()
          // 对于不空数据块,把其信息加入到列表中
          if (size > 0) {
            curBlocks += ((blockId, size))
            remoteBlocks += blockId
            numBlocksToFetch += 1
            curRequestSize += size
          } else if (size < 0) {
            throw new BlockException(blockId, "Negative block size " + size)
          }
          // 按照不大于maxBytesInFlight的标准,把这些需要处理数据组合在一起
          if (curRequestSize >= targetRequestSize) {
            // Add this FetchRequest
            remoteRequests += new FetchRequest(address, curBlocks)
            curBlocks = new ArrayBuffer[(BlockId, Long)]
            logDebug(s"Creating fetch request of $curRequestSize at $address")
            curRequestSize = 0
          }
        }
        // 剩余的处理数据组成一次请求
        if (curBlocks.nonEmpty) {
          remoteRequests += new FetchRequest(address, curBlocks)
        }
      }
    }
    logInfo(s"Getting $numBlocksToFetch non-empty blocks out of $totalBlocks blocks")
    remoteRequests
  }

数据读取完毕后,回到BlockStoreShuffleReader的read方法,判断是否定义聚合,如果需要,则根据键值调用Aggregator的combineCombinersByKey
方法进行聚合。聚合完毕,使用外部排序(ExternalSorter)对数据进行排序并放入内存中:

override def read(): Iterator[Product2[K, C]] = {
    ...
    val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) {
      if (dep.mapSideCombine) {
        // 对于上游ShuffleMapTask已经合并的,对合并结果数据进行聚合
        val combinedKeyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, C)]]
        dep.aggregator.get.combineCombinersByKey(combinedKeyValuesIterator, context)
      } else {
        // 对未合并的数据进行聚合处理,注意对比类型一个是C一个是Nothing
        val keyValuesIterator = interruptibleIter.asInstanceOf[Iterator[(K, Nothing)]]
        dep.aggregator.get.combineValuesByKey(keyValuesIterator, context)
      }
    } else {
      require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!")
      interruptibleIter.asInstanceOf[Iterator[Product2[K, C]]]
    }

    // Sort the output if there is a sort ordering defined.
    dep.keyOrdering match {
      case Some(keyOrd: Ordering[K]) =>
        // 对于需要排序,使用ExternalSorter进行排序,根据获取的排序方式,对数据进行排序并写入到内存缓冲区中。
        // 如果排序中的Map占用的内存已经超越了使用的阈值,则将Map中的内容溢写到磁盘
        val sorter =
          new ExternalSorter[K, C, C](context, ordering = Some(keyOrd), serializer = dep.serializer)
        sorter.insertAll(aggregatedIter)
        context.taskMetrics().incMemoryBytesSpilled(sorter.memoryBytesSpilled)
        context.taskMetrics().incDiskBytesSpilled(sorter.diskBytesSpilled)
        context.taskMetrics().incPeakExecutionMemory(sorter.peakMemoryUsedBytes)
        CompletionIterator[Product2[K, C], Iterator[Product2[K, C]]](sorter.iterator, sorter.stop())
      case None =>
        aggregatedIter
    }
  }

 

参考:

https://spark-internals.books.yourtion.com/markdown/4-shuffleDetails.html;

图解Spark核心:核心技术与案例实战

 

 

 

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值