声明
《大数据与云安全专题》课程笔记
授课老师 沈晴霓
老师主要从事安全领域工作,与国家机关、军方、大型企业合作多
实验室主要从事操作系统(国内最高安全等级),有大量开源项目
后面从事云操作系统开发
引言
侧重大数据中的系统和数据安全
机器学习的 算法+系统
e.g. 机器学习时大量数据在训练,可能可以通过模型泄露用户数据?correct me if i’m wrong
云 分为多层 XaaS 每层都可能发生安全问题
云-提供强大服务,具有吸引力
性能开销、成本…控制,将安全技术实用地应用到云中
e.g. 大型云平台系统 第三方提供,需要证明安全,现在几乎没有证明,所以人们难以信任
大量用户使用会产生瓶颈
云架构
大云 + 小云
(mobile→multi-access) edge computing→大云 + 小云/边缘云-靠近用户(物联网设备)的计算节点
类似 5G:核心网 + 基站 地铁附近有基站
安全性:大云一般又大公司维护,大数据中心,相对可信任;小云则容易暴露在外,安全问题需要改进
海云计算
云 + 终端 协同计算 (终端也具有计算能力)
课程性质
专题课,不够系统,讲最受关注的点
教学内容
技术概述6 安全挑战6 云计算安全技术+产业界讲座12 大数据安全技术+隐私保护、访问控制等8
教材
云计算安全与隐私 TimMather
Big Data Concepts, Theories, and Application
成绩
分组
考查报告80% 陈述PPT20%
云计算案例
白宫公开Hilary材料,Washington Post 租用Amazon EC2 9h 完成pdf转档
Giftag Web 2.0 插件应用 迁移到GAE平台,利用Google具有可伸缩的计算处理性能,Google的分布式数据库,等提供稳定的网络服务
哈根达斯需要CRM客户关系管理系统在各地直接交流的服务(execl+access+VPN效果差) Salesforce CRM企业版提供软件