来自:Liu-Thompkins, Yuping Liu, Michelle Rogerson. Rising to Stardom: An Empirical Investigation of the Diffusion of User-generated Content[J]. Journal of Interactive Marketing, 2012, 26(2):71-82.
收录于:Journal of International Marketing (SSCI),营销学期刊, 影响因子:5.026
关键字: User-generated content; Diffusion; Network analysis; Viral marketing; Hazard modeling
摘要:
随着在线用户生产内容的发展,市场也期待能更好地利用这一资源。理解这类内容的病毒式传播、进行流行度预测将很有意义。在本论文中,我们结合网络分析与扩散理论,研究在线用户生产内容的扩散。我们主要划分出三类影响扩散结果的要素:网络结构、内容特点以及作者特点。使用一种加权计分模型(a proportional rates model),分析YouTube上一组视频的扩散。我们的研究结果展现了:像较于拥有连接(connections)很广的订阅者,拥有一些朋友(friends)的订阅者会更有利于视频的传播。并且,在订阅者的网络连接结构和扩散速率之间存在曲线关系,且中等程度的连接情况下传播速率最高。就内容特点而言,我们发现教育或娱乐价值