CSP4

题意:TT数鸭子

这一天,TT因为疫情在家憋得难受,在云吸猫一小时后,TT决定去附近自家的山头游玩。
TT来到一个小湖边,看到了许多在湖边嬉戏的鸭子,TT顿生羡慕。此时他发现每一只鸭子都不 一样,或羽毛不同,或性格不同。TT在脑子里开了一个map<鸭子,整数> tong,把鸭子变成了 一些数字。现在他好奇,有多少只鸭子映射成的数的数位中不同的数字个数小于k。

输入格式:
输入第一行包含两个数n,k,表示鸭子的个数和题目要求的k。
接下来一行有n个数, a i a_i ai,每个数表示鸭子被TT映射之后的值。

输出格式:
输出一行,一个数,表示满足题目描述的鸭子的个数。
无行末空格

样例输入:

6 5
123456789 9876543210 233 666 1 114514

样例输出:

4

数据范围:
在这里插入图片描述

思路:

这道题思路倒是不难,就是判断一下给定数字中每位数不同数的个数,考试用了stl超时了,这提醒当时间复杂度逼近1e8的时候一定要谨慎
这里有个小点降复杂度:当不同数已经>=k了就一定不满足要求了,可以结束循环了

代码:

#include<cstdio>
#include<cstring>
using namespace std;
int n,k,num,ans;
long long m;
int a[16]; 

int main(){
	scanf("%d%d",&n,&k);
	for(int i=0;i<n;i++){
		scanf("%lld",&m);
		memset(a,0,sizeof(a));
		num=0;
		while(m){
			int t=m%10;
			m/=10;
			if(a[t]==0) {num++;a[t]=1;}
			if(num>=k) break;
		}
		if(num<k)	ans++;
	}
	printf("%d\n",ans);
	return 0;
} 

题意:ZJM要抵御宇宙射线

据传,2020年是宇宙射线集中爆发的一年,这和神秘的宇宙狗脱不了干系!但是瑞神和东东忙 于正面对决宇宙狗,宇宙射线的抵御工作就落到了ZJM的身上。假设宇宙射线的发射点位于一个 平面,ZJM已经通过特殊手段获取了所有宇宙射线的发射点,他们的坐标都是整数。而ZJM要构 造一个保护罩,这个保护罩是一个圆形,中心位于一个宇宙射线的发射点上。同时,因为大部分 经费都拨给了瑞神,所以ZJM要节省经费,做一个最小面积的保护罩。当ZJM决定好之后,东东 来找ZJM一起对抗宇宙狗去了,所以ZJM把问题扔给了你~

输入格式:
输入 第一行一个正整数N,表示宇宙射线发射点的个数
接下来N行,每行两个整数X,Y,表示宇宙射线发射点的位置

输出格式:
输出包括两行
第一行输出保护罩的中心坐标x,y 用空格隔开
第二行输出保护罩半径的平方
(所有输出保留两位小数,如有多解,输出x较小的点,如扔有多解,输入y较小的点)
无行末空格

样例输入:

5
0 0
0 1
1 0
0 -1
-1 0

样例输出:

0.00 0.00
1.00

数据范围:
在这里插入图片描述

思路:

先说一下这道题的几个坑点:
1.以其中一个点做圆心
2.输出半径的平方

考试的时候我一直在做外接圆啊啊啊,没有好好审题!这道题以其中一个点做圆心反而简化了许多。

具体思路:枚举每个点,计算这个点到其他点的距离的最大值(作为备选半径),最后取上述每个点所得的备选半径中的最小值(使圆的面积最小),圆心则根据要求取(若半径相等,则取x较小的点)。上述使用了双重循环,数据范围1e3,可以实现。

代码:

#include<cstdio>
#include<math.h>
using namespace std;
const double inf=5*1e8;
int n;
double ansx=inf,ansy=inf,r=inf;
int x[1010],y[1010];

int main(){
	scanf("%d",&n);
	for(int i=0;i<n;i++)
		scanf("%d%d",&x[i],&y[i]);
	for(int i=0;i<n;i++){
		double len=0;
		for(int j=0;j<n;j++){
			long long a=pow(x[j]-x[i],2);
			long long b=pow(y[j]-y[i],2);
			double l=sqrt(a+b);
			if(l>len) len=l;
		}
		if(len==r){
			if(ansx>x[i]){ansx=x[i];ansy=y[i];}
		}
		if(len<r){
			ansx=x[i];ansy=y[i];r=len;
		}
	}
	printf("%.2lf %.2lf\n",ansx,ansy);
	printf("%.2lf\n",pow(r,2));
	return 0;
}

题意:

时间限制 5s 空间限制 256MB

在瑞神大战宇宙射线中我们了解到了宇宙狗的厉害之处,虽然宇宙狗凶神恶煞,但是宇宙狗有一 个很可爱的女朋友。
最近,他的女朋友得到了一些数,同时,她还很喜欢树,所以她打算把得到的数拼成一颗树。
这一天,她快拼完了,同时她和好友相约假期出去玩。贪吃的宇宙狗不小心把树的树枝都吃掉 了。所以恐惧包围了宇宙狗,他现在要恢复整棵树,但是它只知道这棵树是一颗二叉搜索树,同 时任意树边相连的两个节点的gcd(greatest common divisor)都超过1。
但是宇宙狗只会发射宇宙射线,他来请求你的帮助,问你能否帮他解决这个问题。
补充知识:
GCD:最大公约数,两个或多个整数共有约数中最大的一个 ,例如8和6的最大公约数是2。
一个简短的用辗转相除法求gcd的例子:
int gcd(int a,int b){return b == 0 ? a : gcd(b,a%b);}

输入格式:
输入第一行一个t,表示数据组数。
对于每组数据,第一行输入一个n,表示数的个数
接下来一行有n个数 a i a_i ai,输入保证是升序的。

输出格式:
每组数据输出一行,如果能够造出来满足题目描述的树,输出Yes,否则输出No。
无行末空格。

样例输入1:

1
6
3 6 9 18 36 108

样例输出1:

Yes

样例输入2:

2
2
7 17
9
4 8 10 12 15 18 33 44 81

样例输出2:

No
Yes

样例1解释:
可构造树如下:
在这里插入图片描述
数据范围:
在这里插入图片描述

思路:

所有的数据都是有序的,可以考虑区间dp
定义L[i][j]代表[i,j-1]是否可作为j的左子树。R[i][j]表示[i+1,j]是否可以作为i的右子树。将 L[i][i]和R[i][i]都初始化为1,当点i的左子树或者右子树为空时也符合题意

区间长度由1~n,确定左右边界l,r,在l,r内枚举每个点作为根节点,由gcd函数进行判断是否满足题意要求,并更新R,L,当最后满足要求的区间长度为n时可以构建树
状态转移方程如下
if(g[l-1][t]>1) R[l-1][r]=1;
if(g[t][r+1]>1) L[l][r+1]=1;
(即当[l,t]和[t,r]都合法时,其合并起来的[l,r]也合法)

代码:

#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=705;
int t,n;
int a[maxn],g[maxn][maxn];
bool L[maxn][maxn],R[maxn][maxn];

int gcd(int a,int b){
    return b==0?a:gcd(b,a%b);
}

int main(){
	scanf("%d",&t);
	while(t--){
		int flag=0;
		scanf("%d",&n);
		for(int i=1;i<=n;i++)
			scanf("%d",&a[i]);
		memset(L,0,sizeof(L));
		memset(R,0,sizeof(R));
		for(int i=1;i<=n;i++){
			for(int j=1;j<=n;j++){
				g[i][j]=gcd(a[i],a[j]);
				g[j][i]=g[i][j];
			}
			L[i][i]=1;R[i][i]=1;
		}
		//区间长度
		for(int len=1;len<=n;len++){
			//左边界
			for(int l=1;l<=n-len+1;l++){
				int r=l+len-1;		//右边界
				//枚举根节点
				for(int t=l;t<=r;t++){
					if(L[l][t]&&R[t][r]){
						if(len==n) {flag=1;break;}
						if(g[l-1][t]>1) R[l-1][r]=1;
						if(g[t][r+1]>1) L[l][r+1]=1;
					}
				} 
			} 
		} 
		if(flag) printf("Yes\n");
		else printf("No\n");
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值