题意:TT数鸭子
这一天,TT因为疫情在家憋得难受,在云吸猫一小时后,TT决定去附近自家的山头游玩。
TT来到一个小湖边,看到了许多在湖边嬉戏的鸭子,TT顿生羡慕。此时他发现每一只鸭子都不 一样,或羽毛不同,或性格不同。TT在脑子里开了一个map<鸭子,整数> tong,把鸭子变成了 一些数字。现在他好奇,有多少只鸭子映射成的数的数位中不同的数字个数小于k。
输入格式:
输入第一行包含两个数n,k,表示鸭子的个数和题目要求的k。
接下来一行有n个数,
a
i
a_i
ai,每个数表示鸭子被TT映射之后的值。
输出格式:
输出一行,一个数,表示满足题目描述的鸭子的个数。
无行末空格
样例输入:
6 5
123456789 9876543210 233 666 1 114514
样例输出:
4
数据范围:
思路:
这道题思路倒是不难,就是判断一下给定数字中每位数不同数的个数,考试用了stl超时了,这提醒当时间复杂度逼近1e8的时候一定要谨慎
这里有个小点降复杂度:当不同数已经>=k了就一定不满足要求了,可以结束循环了
代码:
#include<cstdio>
#include<cstring>
using namespace std;
int n,k,num,ans;
long long m;
int a[16];
int main(){
scanf("%d%d",&n,&k);
for(int i=0;i<n;i++){
scanf("%lld",&m);
memset(a,0,sizeof(a));
num=0;
while(m){
int t=m%10;
m/=10;
if(a[t]==0) {num++;a[t]=1;}
if(num>=k) break;
}
if(num<k) ans++;
}
printf("%d\n",ans);
return 0;
}
题意:ZJM要抵御宇宙射线
据传,2020年是宇宙射线集中爆发的一年,这和神秘的宇宙狗脱不了干系!但是瑞神和东东忙 于正面对决宇宙狗,宇宙射线的抵御工作就落到了ZJM的身上。假设宇宙射线的发射点位于一个 平面,ZJM已经通过特殊手段获取了所有宇宙射线的发射点,他们的坐标都是整数。而ZJM要构 造一个保护罩,这个保护罩是一个圆形,中心位于一个宇宙射线的发射点上。同时,因为大部分 经费都拨给了瑞神,所以ZJM要节省经费,做一个最小面积的保护罩。当ZJM决定好之后,东东 来找ZJM一起对抗宇宙狗去了,所以ZJM把问题扔给了你~
输入格式:
输入 第一行一个正整数N,表示宇宙射线发射点的个数
接下来N行,每行两个整数X,Y,表示宇宙射线发射点的位置
输出格式:
输出包括两行
第一行输出保护罩的中心坐标x,y 用空格隔开
第二行输出保护罩半径的平方
(所有输出保留两位小数,如有多解,输出x较小的点,如扔有多解,输入y较小的点)
无行末空格
样例输入:
5
0 0
0 1
1 0
0 -1
-1 0
样例输出:
0.00 0.00
1.00
数据范围:
思路:
先说一下这道题的几个坑点:
1.以其中一个点做圆心
2.输出半径的平方
考试的时候我一直在做外接圆啊啊啊,没有好好审题!这道题以其中一个点做圆心反而简化了许多。
具体思路:枚举每个点,计算这个点到其他点的距离的最大值(作为备选半径),最后取上述每个点所得的备选半径中的最小值(使圆的面积最小),圆心则根据要求取(若半径相等,则取x较小的点)。上述使用了双重循环,数据范围1e3,可以实现。
代码:
#include<cstdio>
#include<math.h>
using namespace std;
const double inf=5*1e8;
int n;
double ansx=inf,ansy=inf,r=inf;
int x[1010],y[1010];
int main(){
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d%d",&x[i],&y[i]);
for(int i=0;i<n;i++){
double len=0;
for(int j=0;j<n;j++){
long long a=pow(x[j]-x[i],2);
long long b=pow(y[j]-y[i],2);
double l=sqrt(a+b);
if(l>len) len=l;
}
if(len==r){
if(ansx>x[i]){ansx=x[i];ansy=y[i];}
}
if(len<r){
ansx=x[i];ansy=y[i];r=len;
}
}
printf("%.2lf %.2lf\n",ansx,ansy);
printf("%.2lf\n",pow(r,2));
return 0;
}
题意:
时间限制 5s 空间限制 256MB
在瑞神大战宇宙射线中我们了解到了宇宙狗的厉害之处,虽然宇宙狗凶神恶煞,但是宇宙狗有一 个很可爱的女朋友。
最近,他的女朋友得到了一些数,同时,她还很喜欢树,所以她打算把得到的数拼成一颗树。
这一天,她快拼完了,同时她和好友相约假期出去玩。贪吃的宇宙狗不小心把树的树枝都吃掉 了。所以恐惧包围了宇宙狗,他现在要恢复整棵树,但是它只知道这棵树是一颗二叉搜索树,同 时任意树边相连的两个节点的gcd(greatest common divisor)都超过1。
但是宇宙狗只会发射宇宙射线,他来请求你的帮助,问你能否帮他解决这个问题。
补充知识:
GCD:最大公约数,两个或多个整数共有约数中最大的一个 ,例如8和6的最大公约数是2。
一个简短的用辗转相除法求gcd的例子:
int gcd(int a,int b){return b == 0 ? a : gcd(b,a%b);}
输入格式:
输入第一行一个t,表示数据组数。
对于每组数据,第一行输入一个n,表示数的个数
接下来一行有n个数
a
i
a_i
ai,输入保证是升序的。
输出格式:
每组数据输出一行,如果能够造出来满足题目描述的树,输出Yes,否则输出No。
无行末空格。
样例输入1:
1
6
3 6 9 18 36 108
样例输出1:
Yes
样例输入2:
2
2
7 17
9
4 8 10 12 15 18 33 44 81
样例输出2:
No
Yes
样例1解释:
可构造树如下:
数据范围:
思路:
所有的数据都是有序的,可以考虑区间dp
定义L[i][j]代表[i,j-1]是否可作为j的左子树。R[i][j]表示[i+1,j]是否可以作为i的右子树。将 L[i][i]和R[i][i]都初始化为1,当点i的左子树或者右子树为空时也符合题意
区间长度由1~n,确定左右边界l,r,在l,r内枚举每个点作为根节点,由gcd函数进行判断是否满足题意要求,并更新R,L,当最后满足要求的区间长度为n时可以构建树
状态转移方程如下
if(g[l-1][t]>1) R[l-1][r]=1;
if(g[t][r+1]>1) L[l][r+1]=1;
(即当[l,t]和[t,r]都合法时,其合并起来的[l,r]也合法)
代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=705;
int t,n;
int a[maxn],g[maxn][maxn];
bool L[maxn][maxn],R[maxn][maxn];
int gcd(int a,int b){
return b==0?a:gcd(b,a%b);
}
int main(){
scanf("%d",&t);
while(t--){
int flag=0;
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
memset(L,0,sizeof(L));
memset(R,0,sizeof(R));
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
g[i][j]=gcd(a[i],a[j]);
g[j][i]=g[i][j];
}
L[i][i]=1;R[i][i]=1;
}
//区间长度
for(int len=1;len<=n;len++){
//左边界
for(int l=1;l<=n-len+1;l++){
int r=l+len-1; //右边界
//枚举根节点
for(int t=l;t<=r;t++){
if(L[l][t]&&R[t][r]){
if(len==n) {flag=1;break;}
if(g[l-1][t]>1) R[l-1][r]=1;
if(g[t][r+1]>1) L[l][r+1]=1;
}
}
}
}
if(flag) printf("Yes\n");
else printf("No\n");
}
return 0;
}