一元高斯分布&多元高斯分布&高斯过程&混合高斯模型

本文详细介绍了高斯分布从一元到多元的拓展,包括独立和相关多元正态分布,以及高斯过程的概念。高斯过程是一系列连续域上的随机变量,每个变量服从高斯分布,且任意有限集合服从多元高斯分布。此外,还讨论了高斯混合模型,它是多个高斯分布的线性组合,可用于拟合复杂分布。
摘要由CSDN通过智能技术生成

高斯分布,又称正态分布,应用于连续型随机变量分布的模型中,对于多元高斯分布存在和一元高斯相似的,对于多元实值向量,使熵取得最大值的是高斯分布。当多个随机变量之和相加时,根据拉普拉斯提出的中心极限定理(central limit theorem),⼀组随机变量之和(当然也是随机变量)的概率分布随着和式中项的数量的增加⽽逐渐趋向⾼斯分布,在实际应用中,随着样本数量的增加,分布会迅速收敛为高斯分布,二项分布当观测次数增多时,也会趋向于高斯分布(  二项分布、泊松分布和正态分布的区别及联系? - 知乎)。

 

首先,明确一元高斯分布的公式为:

一个y(也就是f(x))对应一个维度的x,当一元高斯分布拓展到多元高斯分布时,也就是多个x(x1,x2,x3……)意味着多个维度,也就意味着多个特征。

我们假设了多元高斯分布的各个维度之间,也就是各个x变量之间是相互独立的,在这个假设条件下,独立的多元高斯分布公式为:

其中:

代表变量X的协方差矩阵,i行j列的元素值表示xi于xj的协方差(注意:协方差矩阵其实可以理解为表示变量之间关系的表达,因为这里假设变量之间是相互独立的,因此只有对角线上的元素值是不为0的)

此外,协方差矩阵是一个实对称阵。

如果不同维度之间存在着关联,则称为相关多元正态分布,表示为:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值