K-means聚类算法第3关:计算各聚类中心

任务描述

本关实现一个函数来计算各簇的中心。

相关知识

在前一个关卡中,我们实现了一个函数来计算距离每个样本最近的簇中心,这样每一个样本都有了所属的簇团,从而将一堆数据分成了 n 个簇,也就是 n 个类。

K-means 算法是一个迭代优化算法,每次迭代我们需要重新计算簇的中心。一般就是通过计算每个簇类所有样本的平均值来获得。可以使用 Numpy 里面的 mean 方法np.mean(x,0)来计算均值。

编程任务

本关卡要求你实现函数 estimate_centers,在右侧编辑器 Begin-End 区间补充代码,需要填充的代码块如下:

  1. # -*- coding: utf-8 -*-
  2. import numpy as np
  3. def estimate_centers(X, y_estimated, centers):
  4. """重新计算各聚类中心
  5. 参数:
  6. X - numpy二维数组,代表数据集的样本特征矩阵
  7. y_estimated - numpy数组,估计的各个样本的聚类中心索引
  8. n_clusters - 整数,设定的聚类个数
  9. 返回值:
  10. centers - numpy二维数组,各个样本的聚类中心
  11. """
  12. centers = np.zeros((n_clusters, X.shape[1]))
  13. # 请在此添加实现代码 #
  14. #********** Begin *********#
  15. #********** End ***********#
  16. return centers

测试说明

输入一组向量(数据集)、一个数组(每个元素分配的类中心编号)和一组向量(各聚类中心),输出一组向量(各聚类中心)。平台比对函数 estimate_centers 的输出结果与正确结果的差异,只有完全正确才能进入下一关。


开始你的任务吧,祝你成功!

# -*- coding: utf-8 -*-
def estimate_centers(X, y_estimated, n_clusters):
    """重新计算各聚类中心
    参数:
        X - numpy二维数组,代表数据集的样本特征矩阵
        y_estimated - numpy数组,估计的各个样本的聚类中心索引
        n_clusters - 整数,设定的聚类个数
    返回值:
        centers - numpy二维数组,各个样本的聚类中心
    """
    import numpy as np
    centers = np.zeros((n_clusters, X.shape[1]))
    #   请在此添加实现代码     #
    #********** Begin *********#
    for i in range(n_clusters):
        centers[i] = np.mean(X[y_estimated==i], 0)
    #********** End ***********#
    return centers    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

畜牧当道

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值