逆元 2016.6.16

学数论的时候写过一篇关于扩展欧几里德求解模的逆元的博客,但是当时都不知道求逆元有什么用...(难过

http://blog.csdn.net/only_air/article/details/51033846


参考:

http://blog.csdn.net/cqlf__/article/details/7953039

http://blog.csdn.net/acdreamers/article/details/8220787


在计算 (a / b ) mod c 时,往往需要先计算 b mod c 的逆元 p(b 有逆元的条件是 gcd(b, c) == 1)

然后由 (a * p) mod c 得结果 ans,(这里 b 的逆元 p 满足 (b * p) mod c = 1)

先来简单证明一下:
(a / b) mod c = ans

(b * p) mod c = 1

 ==》   (a / b) * (b * p) mod c = ans

 ==》   (a * p) mod c = ans

对于正整数 a 和 b,如果有 a * x  ≡ 1 (mod b),那么把这个同余方程中的 x 的最小正整数解叫做 a 模 b 的逆元

接下来就需要知道根据 b 和 c,怎么计算逆元 p 了

①费马小定理

逆元一般用扩展欧几里得算法来求得,如果 c 为素数,那么还可以根据费马小定理得到逆元为 b ^ (c - 2) mod c
费马小定理:

对于质数 p 和任意整数 a,有 a ^ p ≡ a (mod p)
将两边同时约去一个 a,则有 a ^ (p - 1) ≡ 1(mod p)

推导过程:

c 为素数,根据费马小定理

==》b ^ c  ≡ b (mod c)

==》b ^ (c - 1) ≡ 1 (mod c)

==》b * (b ^ (c - 2)) ≡ 1 (mod c)

==》逆元 p = b ^ (c - 2) mod c


②扩展欧几里德算法

b * p mod c = 1 等价于 b * p = c * y + 1  即 b * p + c * (-y) = 1

根据扩展欧几里德算法,求出 p 和(-y)

p 应为正整数,即若 p 为负整数,需要将之化正整数,即与负数取模同理,将 p 加上 y,直至 p > 0为止,所得的数即为乘法逆元


③通用的求逆元方法

ans = (a / b) mod c = a mod (c * b) / b

证明如下

已知 b | a

(a / b) = k * c + ans

a = k * b * c + ans * b

a mod (b * c) = ans * b

a mod (b * c) / b = ans

51Nod 1256 乘法逆元

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <stack>
#include <map>
#include <cmath>
#include <cctype>

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;

const ull mod = 1e9 + 7;
const int INF = 0x7fffffff;
int X, Y;

int Ext_Gcd(int a, int b);

int main()
{
#ifdef __AiR_H
    freopen("in.txt", "r", stdin);
#endif // __AiR_H
    int M, N;
    scanf("%d%d", &M, &N);
    Ext_Gcd(M, N);
    while (X < 0) {
        X += N;
    }
    printf("%d\n", X);
    return 0;
}

int Ext_Gcd(int a, int b)
{
    if (b == 0) {
        X = 1;
        Y = 0;
        return a;
    }
    int gcd = Ext_Gcd(b, a%b);
    int t = X;
    X = Y;
    Y = t - a/b * Y;
    return gcd;
}

CodeForces_678D Iterated Linear Function

题意:

f(x) = Ax + Bg(0)(x) = x andg(n)(x) = f(g(n - 1)(x)) forn > 0

g(n)(x) modulo109 + 7


解题思路:(快速幂,逆元)

g(0)(x) = x

g(1)(x) = A* x + B

g(2)(x) = (A^2) * x + A * B + B

g(3)(x) = (A^3) * x + (A ^ 2)*B + A * B + B

g(n)(x) = (A^n) * x + (A ^ (n-1))*B + ... + A * B +  B


所以当 A ≠ 1 时, g(n)(x) =  (A^n) * x + B * ((A ^ n - 1) / (A - 1))

当 A = 1时,g(n)(x) = x + n * B


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <stack>
#include <map>
#include <cmath>
#include <cctype>

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;

const ull mod = 1e9 + 7;
const int INF = 0x7fffffff;
ull A, B, n, x;

ull Pow(ull x, ull n);

int main()
{
#ifdef __AiR_H
    freopen("in.txt", "r", stdin);
#endif // __AiR_H
    scanf("%I64d%I64d%I64d%I64d", &A, &B, &n, &x);
    if (A == 1) {
		printf("%I64d\n", (x + ((n%mod) * B) % mod) % mod);
	} else {
		ull ans = Pow(A, n) * x % mod;
		ans += (Pow(A, n) - 1) * Pow(A-1, mod-2) % mod * B;
        ans %= mod;
		printf("%I64d\n", ans);
	}
    return 0;
}

ull Pow(ull x, ull n)
{
    ull ret = 1;
    ull t = x % mod;
    while (n) {
        if (n&1) {
            ret = (ret * t) % mod;
        }
        t = (t * t) % mod;
        n >>= 1;
    }
    return ret;
}

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <stack>
#include <map>
#include <cmath>
#include <cctype>

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;

const ll mod = 1e9 + 7;
const int INF = 0x7fffffff;
ll X, Y;

ll Pow(ll x, ll n);
ll Ext_Gcd(ll a, ll b);

int main()
{
#ifdef __AiR_H
    freopen("in.txt", "r", stdin);
#endif // __AiR_H
    ll A, B, n, x;
    scanf("%I64d%I64d%I64d%I64d", &A, &B, &n, &x);
    ll ans = 0;
    if (A == 1) {
        ans = (x + ((n%mod) * B)%mod)%mod;
    } else {
        ans = Pow(A, n) * x % mod;
        Ext_Gcd(A-1, mod);
        while (X < 0) {
            X += mod;
        }
        ans += (Pow(A, n) - 1) * X % mod * B;
        ans %= mod;
    }
    printf("%I64d\n", ans);
    return 0;
}

ll Pow(ll x, ll n)
{
    ll ret = 1;
    ll t = x % mod;
    while (n) {
        if (n & 1) {
            ret = (ret * t) % mod;
        }
        n >>= 1;
        t = (t * t) % mod;
    }
    return ret;
}

ll Ext_Gcd(ll a, ll b)
{
    if (b == 0) {
        X = 1;
        Y = 0;
        return a;
    }
    ll d = Ext_Gcd(b, a%b);
    ll t = X;
    X = Y;
    Y = t - a/b*Y;
    return d;
}

HDU 5685 Problem A

解题思路:

大字符串位置 a 到 位置 b 这段的哈希值等于 (H(b) / H(a - 1)) mod 9973

然后就是求逆元了


#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <algorithm>
#include <queue>
#include <vector>
#include <stack>
#include <map>
#include <cmath>
#include <cctype>

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int uint;

const int mod = 9973;
const int INF = 0x7fffffff;
const int maxn = 1e5 + 10;
char s[maxn];
int H[maxn];
int N;

int Quick_Pow(int x, int n);

int main()
{
#ifdef __AiR_H
    freopen("in.txt", "r", stdin);
#endif // __AiR_H
    while (scanf("%d%s", &N, s) != EOF) {
        int len = strlen(s);
        H[0] = 1;
        for (int i = 0; i < len; ++i) {
            H[i+1] = H[i] * (s[i] - 28) % mod;
        }
        int a, b;
        while (N--) {
            scanf("%d%d", &a, &b);
            printf("%d\n", H[b] * Quick_Pow(H[a-1], mod-2) % mod);
        }
    }
    return 0;
}

int Quick_Pow(int x, int n)
{
    int ret = 1;
    int t = x % mod;
    while (n) {
        if (n & 1) {
            ret = ret * t % mod;
        }
        t = t * t % mod;
        n >>= 1;
    }
    return ret;
}


评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值