贝叶斯模型
最小错误率贝叶斯
先验概率
-
反映了我们的经验知识,是一种简单的判决准则
-
只依靠先验概率并不靠谱,如:学校男女比例4:1,走过来的人是男生可能性大,但不能直接分类为男生
-
需要更多的特征信息进一步进行分类
似然概率
- 特征的类条件概率
在已知特征属于某个类的前提条件下的概率密度分布
二类判决问题
- 假设已知:
-
两类的先验概率 p ( w 1 ) p(w_1) p(w1)和 p ( w 2 ) p(w_2) p(w2)
-
特征x的类条件概率密度: p ( x ∣ w 1 ) p(x|w_1) p(x∣w1)和 p ( x ∣ w 2 ) p(x|w_2) p(x∣w2)
-
当前待分类样本的观测值 x x x
- 判断观测值 x x x属于 w 1 w_1 w1和 w 2 w_2 w2的概率情况:
后验概率:通过特征判断
p ( w 1 ∣ x ) > p ( w 2 ∣ x ) → w = w 1 p ( w 2 ∣ x ) > p ( w 1 ∣ x ) → w = w 2 \begin{gathered}p(w_1|\bold{x})>p(w_2|\bold{x})\rightarrow w=w_1\\p(w_2|\bold{x})>p(w_1|\bold{x})\rightarrow w=w_2\end{gathered} p(w1∣x)>p(w2∣x)→w=w1p(w2∣x)>p(w1∣x)→w=w2
最小错误率贝叶斯公式
P ( w i ∣ x ) = P ( x ∣ w i ) P ( w i ) P ( x ) = P ( x ∣ w i ) P ( w i ) ∑ i P ( x ∣ w i ) P ( w i ) P o s t e r i o r = L i k e l i h o o d × P r i o r E v i d e n c e \begin{gathered}P(w_i|\bold{x})=\frac{P(\bold{x}|w_i)P(w_i)}{P(\bold{x})}=\frac{P(\bold{x}|w_i)P(w_i)}{\sum_iP(\bold{x}|w_i)P(w_i)}\\\mathit{Posterior}=\frac{\mathit{Likelihood}\times{Prior}}{\mathit{Evidence}}\end{gathered} P(wi∣x)=P(x)P(x∣wi)P(wi)=∑iP(x∣wi)P(wi)P(x∣wi)P(wi)Posterior=EvidenceLikelihood×Prior
-
Posterior: P ( w i ∣ x ) P(w_i|\bold{x}) P(wi∣x)观测到的具有 x \bold{x} x属性的事例或样本,该样本属于 w i w_i wi的概率。
-
Likelihood: P ( x ∣ w i ) P(\bold{x}|w_i) P(x∣wi)似然值,即第 w i w_i wi类样本, x \bold{x} x属性或特征的分布情况。
-
Prior: P ( w i ) P(w_i) P(wi)先验概率。
-
Evidence:归一化因子,保证类别后验概率之和为1。
最大后验准则
w ∗ = a r g m a x P ( w i ∣ x ) \mathit{w^*}=argmax{P(w_i|\bold{x})} w∗=argmaxP(wi∣x)
正比于贝叶斯公式的分子部分。
误差
P ( w 1 ∣ x ) + P ( w 2 ∣ x ) = 1 P(w_1|x)+P(w_2|x)=1 P(w1∣x)+P(w2∣x)=1
-
P ( e r r o r ∣ x ) = { P ( w 1 ∣ x ) , w = w 2 P ( w 2 ∣ x ) , w = w 1 P(error|x)= \begin{cases}P(w_1|x),w=w_2\\P(w_2|x),w=w_1\end{cases} P(error∣x)={ P(w1∣x),w=w2P(w2∣x),w=w1
-
P ( e r r o r ) = ∫ − ∞ ∞ P ( e r r o r , x ) d x = ∫ − ∞ ∞ P ( e r r o r ∣ x ) p ( x ) d x P(error)=\int_{-\infty}^{\infty}P(error,x)dx=\int_{-\infty}^{\infty}P(error|x)p(x)dx P(error)=∫−∞∞P(error,x)dx=∫−∞∞P(error∣x)p(x)dx
期望产生分类错误最小:
m i n P ( e r r o r ) = ∫ − ∞ ∞ m i n { P ( e r r o r ∣ x ) } p ( x ) d x minP(error)=\int_{-\infty}^{\infty}min\{P(error|x)\}p(x)dx minP(error)=∫−∞∞min{ P(error∣x)}p(x)dx
可以通过后验概率规则实现,即谁的后验概率大就分给谁:
p ( w 1 ∣ x ) > p ( w 2 ∣ x ) → w = w 1 p ( w 2 ∣ x ) > p ( w 1 ∣ x ) → w = w 2 \begin{gathered}p(w_1|\bold{x})>p(w_2|\bold{x})\rightarrow w=w_1\\p(w_2|\bold{x})>p(w_1|\bold{x})\rightarrow w=w_2\end{gathered} p(w1∣x)>p(w2∣x)→w=w1p(w2∣x)>p(w1∣x)→w=w2
例题
对癌症进行诊断,对一批人进行普查,规律如下:
-
每1000个人中有5个癌症病人
-
每100个正常人中有一个是试验呈阳性反应
-
每100个癌症病人中有95个人试验呈阳性反应
问:若甲呈阳性反应,甲是否正常?
分析:
-
第1告诉我们先验概率
-
2、3告诉我们似然概率:
设: w 1 → w_1\rightarrow w1→正常; w 2 → w_2\rightarrow w