Leetcode08-#62/70/78


1 #62-不同路径

  • 题目:
    一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
    机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
    问总共有多少条不同的路径?

    • 示例1:
      在这里插入图片描述
    输入:m = 3, n = 7
    输出:28
    
    • 示例2:
    输入:m = 3, n = 2
    输出:3
    解释:
    从左上角开始,总共有 3 条路径可以到达右下角。
    1. 向右 -> 向右 -> 向下
    2. 向右 -> 向下 -> 向右
    3. 向下 -> 向右 -> 向右
    
  • 分析:

    • 分析1:直接调用函数
      n行m列说明最终路径里面一定会有n-1个向下的步骤和m-1个向右的步骤。意思就是在m+n-2个步骤的路径上,选n-1个位置来向下走,剩下的位置向右走即可,这个数据量直接调函数即可。
    • 分析2:动态规划
      f ( i , j ) f(i,j) f(i,j)表示从左上角走到 ( x , y ) (x,y) (x,y)的路径数量,其中i和y的范围分别是[0,m)和[0,n)。
      每一步只能从向下或者向右移动一步,因此要想走到 ( i , j ) (i, j) (i,j),如果向下走一步,那么会从 ( i − 1 , j ) (i-1, j) (i1,j) 走过来;如果向右走一步,那么会从 ( i , j − 1 ) (i, j-1) (i,j1) 走过来。因此可以写出动态规划转移方程: f ( i , j ) = f ( i − 1 , j ) + f ( i , j − 1 ) f(i,j)=f(i−1,j)+f(i,j−1) f(i,j)=f(i1,j)+f(i,j1)
      如果 i = 0 i=0 i=0,那么 f ( i − 1 , j ) f(i-1,j) f(i1,j) 并不是一个满足要求的状态,需要忽略这一项;同理,如果 j = 0 j=0 j=0,那么 f ( i , j − 1 ) f(i,j-1) f(i,j1) 并不是一个满足要求的状态,需要忽略这一项。
      因此初始条件为 f ( 0 , 0 ) = 1 f(0,0)=1 f(0,0)=1,即从左上角走到左上角有一种方法。
  • 答案:

    • 答案1:
    class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        return  comb(m + n - 2, n - 1)
        # Python中的method方法用于获取从n个项目中选择k个项目(不重复且无顺序)的方法数量。
    
    • 答案2:
    class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        dp = [[1]*n] + [[1]+[0] * (n-1) for _ in range(m-1)]
        #print(dp)
        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i-1][j] + dp[i][j-1]
        return dp[-1][-1]
    

参考1
参考2


2 #70-爬楼梯

  • 题目:
    假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
    每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
    注意:给定 n 是一个正整数。
    • 示例1:
    输入: 2
    输出: 2
    解释: 有两种方法可以爬到楼顶。
    1.  1 阶 + 1 阶
    2.  2 阶
    
  • 分析:
    动态规划,和#62相同。
  • 答案:
    class Solution:
    def climbStairs(self, n: int) -> int:
        dp = {}
        dp[1] = 1
        dp[2] = 2
        for i in range(3,n+1):
            dp[i] = dp[i-1] + dp[i-2]
        return dp[n]
    

3 #78-子集

  • 题目:
    给你一个整数数组 nums ,返回该数组所有可能的子集(幂集)。解集不能包含重复的子集。
    • 示例1:
    输入:nums = [1,2,3]
    输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
    
  • 分析:
    回溯算法
  • 答案:
    class Solution:
    def subsets(self, nums: List[int]) -> List[List[int]]:
        res = []
        n = len(nums)
        def backtrace(i,tmp):
            res.append(tmp)
            for j in range(i,n):
                backtrace(j+1,tmp+[nums[j]])
        backtrace(0,[])
        return res
    

参考

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode的动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值