计算某正整数换算成二进制后bit为1的个数

算是上一篇的续集



[算法]计算某正整数换算成二进制后bit为1的个数

//顺便求推荐:如何在WordPress中插入格式化的带语法高亮的代码或者数学公式,如果你知道的话,请直接在下面留言,谢谢~

侃哥在准备去Cisco的面试,问我一道题:求二进制数中1的个数。

看起来简单,不假思索地写下了

num=0;
while(x)
{
num+=x&1;
x>>1;
}

位运算,似乎已经够简单了。问我还有没有更简单的解法,我想了会儿没想出来,但我觉得应该有。网上一搜,就被一个巧妙的算法震惊了:

num=0;

while(x)
{
x &= (x-1);
num++;
}

相比我的算法,只有一点点改动;但我的算法循环的次数是和原数log 2相关的,而这个算法的循环次数只与原数中bit为1的数目相关,这样,它的循环次数必定少于我的。

果然大长见识。在网上仔细搜了搜,发现好多神奇的算法,虽然没能全看懂,不过摘录几篇,大家一起学习学习~

/************ 第一篇 **************/

对于一个字节(8bit)的变量,求其二进制表示中“1”的个数,要求算法的执行效率尽可能地高。

大多数的读者都会有这样的反应:这个题目也太简单了吧,解法似乎也相当地单一,不会有太多的曲折分析或者峰回路转之处。那么面试者到底能用这个题目 考察我们什么呢?事实上,在编写程序的过程中,根据实际应用的不同,对存储空间或效率的要求也不一样。比如在PC上的程序编写与在嵌入式设备上的程序编写 就有很大的差别。我们可以仔细思索一下如何才能使效率尽可能地“高”。

【解法一】

可以举一个八位的二进制例子来进行分析。对于二进制操作,我们知道,除以一个2,原来的数字将会减少一个0。如果除的过程中有余,那么就表示当前位置有一个1。

以10 100 010为例;

第一次除以2时,商为1 010 001,余为0。

第二次除以2时,商为101 000,余为1。

因此,可以考虑利用整型数据除法的特点,通过相除和判断余数的值来进行分析。于是有了如下的代码。

代码清单2-1


int Count(int v)

{

int num = 0;

while(v)

{

if(v % 2 == 1)

{

num++;

}

v = v/ 2;

}

return num;

}


【解法二】使用位操作

前面的代码看起来比较复杂。我们知道,向右移位操作同样也可以达到相除的目的。唯一不同之处在于,移位之后如何来判断是否有1存在。对于这个问题,再来看看一个八位的数字:10 100 001。

在向右移位的过程中,我们会把最后一位直接丢弃。因此,需要判断最后一位是否为1,而“与”操作可以达到目的。可以把这个八位的数字与00000001进行“与”操作。如果结果为1,则表示当前八位数的最后一位为1,否则为0。代码如下:

代码清单2-2


int Count(int v)

{

int num = 0;

While(v)

{

num += v &0×01;

v >>= 1;

}

return num;

}


【解法三】

位操作比除、余操作的效率高了很多。但是,即使采用位操作,时间复杂度仍为O(log2v),log2v为二进制数的位数。那么,还能不能再降低一些复杂度呢?如果有办法让算法的复杂度只与“1”的个数有关,复杂度不就能进一步降低了吗?

同样用10 100 001来举例。如果只考虑和1的个数相关,那么,我们是否能够在每次判断中,仅与1来进行判断呢?

为了简化这个问题,我们考虑只有一个1的情况。例如:01 000 000。

如何判断给定的二进制数里面有且仅有一个1呢?可以通过判断这个数是否是2的整数次幂来实现。另外,如果只和这一个“1”进行判断,如何设计操作呢?我们知道的是,如果进行这个操作,结果为0或为1,就可以得到结论。

如果希望操作后的结果为0,01 000 000可以和00 111 111进行“与”操作。

这样,要进行的操作就是 01 000 000 &(01 000 000 – 00 000 001)= 01 000 000 &
00 111 111 = 0。

因此就有了解法三的代码:

代码清单2-3


int Count(int v)

{

int num = 0;

while(v)

{

v &= (v-1);

num++;

}

return num;

}


【解法四】使用分支操作

解法三的复杂度降低到OM),其中Mv中1的个数,可能会有人已经很满足了,只用计算1的位数,这样应该够快了吧。然而我们说既然只有八位数据,索性直接把0~255的情况都罗列出来,并使用分支操作,可以得到答案,代码如下:

代码清单2-4


int Count(int v)

{

int num = 0;

switch (v)

{

case 0×0:

num = 0;

break;

case 0×1:

case 0×2:

case 0×4:

case 0×8:

case 0×10:

case 0×20:

case 0×40:

case 0×80:

num = 1;

break;

case 0×3:

case 0×6:

case 0xc:

case 0×18:

case 0×30:

case 0×60:

case 0xc0:

num = 2;

break;

//…

}

return num;

}


解法四看似很直接,但实际执行效率可能会低于解法二和解法三,因为分支语句的执行情况要看具体字节的值,如果=0,那自然在第1个case就得出了答案,但是如果=255,则要在最后一个case才得出答案,即在进行了255次比较操作之后!

看来,解法四不可取!但是解法四提供了一个思路,就是采用空间换时间的方法,罗列并直接给出值。如果需要快速地得到结果,可以利用空间或利用已知结论。这就好比已经知道计算1+2+ … +N的公式,在程序实现中就可以利用公式得到结论。

最后,得到解法五:算法中不需要进行任何的比较便可直接返回答案,这个解法在时间复杂度上应该能够让人高山仰止了。

【解法五】查表法

代码清单2-5


/* 预定义的结果表 */

int countTable[256] =

{

0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3,

3, 4, 3, 4, 4, 5, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3,

4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4,

3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3,

4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6,

6, 7, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4,

5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,

3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3,

4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4,

4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6,

7, 6, 7, 7, 8

};

int Count(int v)

{

//check parameter

return countTable[v];

}


这是个典型的空间换时间的算法,把0~255中“1的个数直接存储在数组中,v作为数组的下标,countTable[v]就是v中“1的个数。算法的时间复杂度仅为O(1)。

在一个需要频繁使用这个算法的应用中,通过“空间换时间”来获取高的时间效率是一个常用的方法,具体的算法还应针对不同应用进行优化。

扩展问题

1.   如果变量是32位的DWORD,你会使用上述的哪一个算法,或者改进哪一个算法?

2.   另一个相关的问题,给定两个正整数(二进制形式表示)AB,问把A变为B需要改变多少位(bit)?也就是说,整数A的二进制表示中有多少位是不同的?

摘自:http://www.msra.cn/Articles/ArticleItem.aspx?Guid=edb3a02b-6d5e-42c7-b2a5-4ae4a18f4254#.

/************************* 第二篇 **********************/

算法-求二进制数中1的个数

问题描述

任意给定一个32位无符号整数n,求n的二进制表示中1的个数,比如n = 5(0101)时,返回2,n = 15(1111)时,返回4

这也是一道比较经典的题目了,相信不少人面试的时候可能遇到过这道题吧,下面介绍了几种方法来实现这道题,相信很多人可能见过下面的算法,但我相信很少有人见到本文中所有的算法。如果您上头上有更好的算法,或者本文没有提到的算法,请不要吝惜您的代码,分享的时候,也是学习和交流的时候。

普通法

我总是习惯叫普通法,因为我实在找不到一个合适的名字来描述它,其实就是最简单的方法,有点程序基础的人都能想得到,那就是移位+计数,很简单,不多说了,直接上代码,这种方法的运算次数与输入n最高位1的位置有关,最多循环32次。

int BitCount(unsigned int n)
{
    unsigned int c = 0 ; // 计数器
    while (n > 0)
    {
        if((n & 1) == 1) // 当前位是1
            ++c ; // 计数器加1
        n >>= 1 ; // 移位
    }
    return c ;
}

一个更精简的版本如下

int BitCount1(unsigned int n)
{
    unsigned int c = 0 ; // 计数器
    for (c = 0; n; n >>= 1) // 循环移位
        c += n & 1 ; // 如果当前位是1,则计数器加1
    return c ;
}

快速法

这种方法速度比较快,其运算次数与输入n的大小无关,只与n中1的个数有关。如果n的二进制表示中有k个1,那么这个方法只需要循环k次即可。其原理是不断清除n的二进制表示中最右边的1,同时累加计数器,直至n为0,代码如下

int BitCount2(unsigned int n)
{
    unsigned int c = 0 ;
    for (c = 0; n; ++c)
    {
        n &= (n - 1) ; // 清除最低位的1
    }
    return c ;
}

为什么n &= (n – 1)能清除最右边的1呢?因为从二进制的角度讲,n相当于在n – 1的最低位加上1。举个例子,8(1000)= 7(0111)+ 1(0001),所以8 & 7 = (1000)&(0111)= 0(0000),清除了8最右边的1(其实就是最高位的1,因为8的二进制中只有一个1)。再比如7(0111)= 6(0110)+ 1(0001),所以7 & 6 = (0111)&(0110)= 6(0110),清除了7的二进制表示中最右边的1(也就是最低位的1)。

查表法

动态建表

由于表示在程序运行时动态创建的,所以速度上肯定会慢一些,把这个版本放在这里,有两个原因

1. 介绍填表的方法,因为这个方法的确很巧妙。

2. 类型转换,这里不能使用传统的强制转换,而是先取地址再转换成对应的指针类型。也是常用的类型转换方法。

int BitCount3(unsigned int n) 
{ 
    // 建表
    unsigned char BitsSetTable256[256] = {0} ; 

    // 初始化表 
    for (int i = 0; i < 256; i++) 
    { 
        BitsSetTable256[i] = (i & 1) + BitsSetTable256[i / 2]; 
    } 

    unsigned int c = 0 ; 

    // 查表
    unsigned char * p = (unsigned char *) &n ; 

    c = BitsSetTable256[p[0]] +  
        BitsSetTable256[p[1]] +  
        BitsSetTable256[p[2]] +  
        BitsSetTable256[p[3]]; 

    return c ; 
}

先说一下填表的原理,根据奇偶性来分析,对于任意一个正整数n

1.如果它是偶数,那么n的二进制中1的个数与n/2中1的个数是相同的,比如4和2的二进制中都有一个1,6和3的二进制中都有两个1。为啥?因为n是由n/2左移一位而来,而移位并不会增加1的个数。

2.如果n是奇数,那么n的二进制中1的个数是n/2中1的个数+1,比如7的二进制中有三个1,7/2 = 3的二进制中有两个1。为啥?因为当n是奇数时,n相当于n/2左移一位再加1。

再说一下查表的原理

对于任意一个32位无符号整数,将其分割为4部分,每部分8bit,对于这四个部分分别求出1的个数,再累加起来即可。而8bit对应2^8 = 256种01组合方式,这也是为什么表的大小为256的原因。

注意类型转换的时候,先取到n的地址,然后转换为unsigned char*,这样一个unsigned int(4 bytes)对应四个unsigned char(1 bytes),分别取出来计算即可。举个例子吧,以87654321(十六进制)为例,先写成二进制形式-8bit一组,共四组,以不同颜色区分,这四组中1的个数分别为4,4,3,2,所以一共是13个1,如下面所示。

10000111 01100101 01000011 00100001 = 4 + 4 + 3 + 2 = 13

静态表-4bit

原理和8-bit表相同,详见8-bit表的解释

int BitCount4(unsigned int n)
{
    unsigned int table[16] = 
    {
        0, 1, 1, 2, 
        1, 2, 2, 3, 
        1, 2, 2, 3, 
        2, 3, 3, 4
    } ;

    unsigned int count = 0 ;
    while (n)
    {
        count += table[n & 0xf] ;
        n >>= 4 ;
    }
    return count ;
}

静态表-8bit

首先构造一个包含256个元素的表table,table[i]即i中1的个数,这里的i是[0-255]之间任意一个值。然后对于任意一个32bit无符号整数n,我们将其拆分成四个8bit,然后分别求出每个8bit中1的个数,再累加求和即可,这里用移位的方法,每次右移8位,并与0xff相与,取得最低位的8bit,累加后继续移位,如此往复,直到n为0。所以对于任意一个32位整数,需要查表4次。以十进制数2882400018为例,其对应的二进制数为10101011110011011110111100010010,对应的四次查表过程如下:红色表示当前8bit,绿色表示右移后高位补零。

第一次(n & 0xff)             10101011110011011110111100010010

第二次((n >> 8) & 0xff)  00000000101010111100110111101111

第三次((n >> 16) & 0xff)00000000000000001010101111001101

第四次((n >> 24) & 0xff)00000000000000000000000010101011

int BitCount7(unsigned int n)
{    
    unsigned int table[256] =     
    {        
        0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,        
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,        
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,        
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,        
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,        
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,        
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,        
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,       
        1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,        
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,        
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,        
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,        
        2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,        
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,        
        3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,        
        4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,    
    };    
    
    return table[n & 0xff] +
        table[(n >> 8) & 0xff] +
        table[(n >> 16) & 0xff] +
        table[(n >> 24) & 0xff] ;
}

当然也可以搞一个16bit的表,或者更极端一点32bit的表,速度将会更快。

平行算法

网上都这么叫,我也这么叫吧,不过话说回来,的确有平行的意味在里面,先看代码,稍后解释

int BitCount4(unsigned int n) 
{ 
    n = (n & 0x55555555) + ((n >> 1) & 0x55555555) ; 
    n = (n & 0x33333333) + ((n >> 2) & 0x33333333) ; 
    n = (n & 0x0f0f0f0f) + ((n >> 4) & 0x0f0f0f0f) ; 
    n = (n & 0x00ff00ff) + ((n >> 8) & 0x00ff00ff) ; 
    n = (n & 0x0000ffff) + ((n >> 16) & 0x0000ffff) ; 

    return n ; 
}

速度不一定最快,但是想法绝对巧妙。 说一下其中奥妙,其实很简单,先将n写成二进制形式,然后相邻位相加,重复这个过程,直到只剩下一位。

以217(11011001)为例,有图有真相,下面的图足以说明一切了。217的二进制表示中有5个1

完美法

int BitCount5(unsigned int n) 
{


    unsigned int tmp = n - ((n >> 1) & 033333333333) - ((n >> 2) & 011111111111);
    return ((tmp + (tmp >> 3)) & 030707070707) % 63;
}

最喜欢这个,代码太简洁啦,只是有个取模运算,可能速度上慢一些。区区两行代码,就能计算出1的个数,到底有何奥妙呢?为了解释的清楚一点,我尽量多说几句。

第一行代码的作用

先说明一点,以0开头的是8进制数,以0x开头的是十六进制数,上面代码中使用了三个8进制数。

将n的二进制表示写出来,然后每3bit分成一组,求出每一组中1的个数,再表示成二进制的形式。比如n = 50,其二进制表示为110010,分组后是110和010,这两组中1的个数本别是2和3。2对应010,3对应011,所以第一行代码结束后,tmp = 010011,具体是怎么实现的呢?由于每组3bit,所以这3bit对应的十进制数都能表示为2^2 * a + 2^1 * b + c的形式,也就是4a + 2b + c的形式,这里a,b,c的值为0或1,如果为0表示对应的二进制位上是0,如果为1表示对应的二进制位上是1,所以a + b + c的值也就是4a + 2b + c的二进制数中1的个数了。举个例子,十进制数6(0110)= 4 * 1 + 2 * 1 + 0,这里a = 1, b = 1, c = 0, a + b + c = 2,所以6的二进制表示中有两个1。现在的问题是,如何得到a + b + c呢?注意位运算中,右移一位相当于除2,就利用这个性质!

4a + 2b + c 右移一位等于2a + b

4a + 2b + c 右移量位等于a

然后做减法

4a + 2b + c –(2a + b) – a = a + b + c,这就是第一行代码所作的事,明白了吧。

第二行代码的作用

在第一行的基础上,将tmp中相邻的两组中1的个数累加,由于累加到过程中有些组被重复加了一次,所以要舍弃这些多加的部分,这就是&030707070707的作用,又由于最终结果可能大于63,所以要取模。

需要注意的是,经过第一行代码后,从右侧起,每相邻的3bit只有四种可能,即000, 001, 010, 011,为啥呢?因为每3bit中1的个数最多为3。所以下面的加法中不存在进位的问题,因为3 + 3 = 6,不足8,不会产生进位。

tmp + (tmp >> 3)-这句就是是相邻组相加,注意会产生重复相加的部分,比如tmp = 659 = 001 010 010 011时,tmp >> 3 = 000 001 010 010,相加得

001 010 010 011

000 001 010 010

———————

001 011 100 101

001 + 101 = 1 + 5 = 6,所以659的二进制表示中有6个1

注意我们想要的只是第二组和最后一组(绿色部分),而第一组和第三组(红色部分)属于重复相加的部分,要消除掉,这就是&030707070707所完成的任务(每隔三位删除三位),最后为什么还要%63呢?因为上面相当于每次计算相连的6bit中1的个数,最多是111111 = 77(八进制)= 63(十进制),所以最后要对63取模。

位标志法

感谢网友 gussing提供

struct _byte  
{  
    unsigned a:1;  
    unsigned b:1;  
    unsigned c:1;  
    unsigned d:1;  
    unsigned e:1;  
    unsigned f:1;  
    unsigned g:1;  
    unsigned h:1;  
};  

long get_bit_count( unsigned char b )  
{
    struct _byte *by = (struct _byte*)&b;  
    return (by->a+by->b+by->c+by->d+by->e+by->f+by->g+by->h);  
}

指令法

感谢网友 Milo Yip提供

使用微软提供的指令,首先要确保你的CPU支持SSE4指令,用Everest和CPU-Z可以查看是否支持。

unsigned int n = 127 ;
unsigned int bitCount = _mm_popcnt_u32(n) ;

 

References

http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/

作者: zdd
出处: http://www.cnblogs.com/graphics/

本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出原文连接,否则保留追究法律责任的权利.

 

/************************** 第三篇 ***********************/

问题:给出一个整数,请设计算法计算该整数以二进制格式表示时的1的个数。例如,十进制整数150,二进制表示为10010110,则1的个数为4个。要求算法效率尽可能的高。

这是今天从一个blog 上看到的题目,乍一看到题目我没想到什么思路(显然,逐个bit位的数肯定不是最优算法)。Blog上给出了算法思路和示例,读后外加实践验证后才理解了其中的这个算法(另两个高级算法实在琢磨不清楚,还请高人看到后教我):

const UINT32 m1  = 0x55555555;  // 01010101010101010101010101010101

const UINT32 m2  = 0x33333333;  // 00110011001100110011001100110011

const UINT32 m4  = 0x0f0f0f0f;  // 00001111000011110000111100001111

const UINT32 m8  = 0x00ff00ff;  // 00000000111111110000000011111111

const UINT32 m16 = 0x0000ffff;  // 00000000000000001111111111111111





/* This is a naive implementation, shown for comparison, and to help in

* understanding the better functions. It uses 20 arithmetic operations

* (shift, add, and).

*原来这还仅仅是一个比较“天真幼稚”的实现,用来使得读者更好的理解和比较其他的更高级的

*算法。

*这个实现使用了20个算术操作符(包括移位、加号以及与操作)。--Adreaman

*/




int popcount_1(UINT32 x)

{

  x = (x & m1) + ((x >> 1) & m1); /*第一步*/

  x = (x & m2) + ((x >> 2) & m2); /*第二步*/

  x = (x & m4) + ((x >> 4) & m4); /*第三步*/

  x = (x & m8) + ((x >> 8) & m8);

  x = (x & m16) + ((x >> 16) & m16);

  return x;

}

这个算法的设计思路是这样的(上面的例子是针对占位32bit的整数来举例的):

设原整数值为x,

第一步:把x的32个bit分成16组(第32bit和第31bit一组,第30bit和第29bit一组……以此类推),然后将每一组的两bit 上的值(因为是二进制数,所以要么是0要么是1)相加并把结果还放在这两bit的位置上,这样,得到结果整数x1,x1的二进制(32bit)可以分为 16组,每一组的数值就是原来整数x在那两bit上1的个数。

第二步:把第一步得到的结果x1的32bit,分成8组(第32、31、30、29bit一组,第28、27、26、25bit一组……以此类推),然后每一组的四bit上的值相加并把结果还放在这四bit的位置上,这样,又得到结果整数x2,x2的二进制可以分为8组,每一组的数值就是原来整数x在那四bit上的1的个数。

……

这样一直分组计算下去,最终,把两个16bit上1的个数相加,得到原来整数x的32bit上1的个数。

下面是我刚看这个算法时想要验证一下,写的验证程序,验证宽2bit、4bit、8bit、16bit和32bit的情况下,此算法的正确性。结果当然是没有问题啦。

注意,逐个计算32bit的计算量太大,一般的机器大概需要1天左右才能把所有32bit的整数验证完毕。

/* ============================================
* Problem:
*   The fastest way to count how many 1s in a 32-bits integer.
*
* Algorithm:
*   The problem equals to calculate the Hamming weight of a 32-bits integer,
*   or the Hamming distance between a 32-bits integer and 0. In binary cases,
*   it is also called the population count, or popcount.[1]
*
*   The best solution known are based on adding counts in a tree pattern
*   (divide and conquer). Due to space limit, here is an example for a
*   8-bits binary number A=01101100:[1]
* | Expression            | Binary   | Decimal | Comment                    |
* | A                     | 01101100 |         | the original number        |
* | B = A & 01010101      | 01000100 | 1,0,1,0 | every other bit from A     |
* | C = (A>>1) & 01010101 | 00010100 | 0,1,1,0 | remaining bits from A      |
* | D = B + C             | 01011000 | 1,1,2,0 | # of 1s in each 2-bit of A |
* | E = D & 00110011      | 00010000 | 1,0     | every other count from D   |
* | F = (D>>2) & 00110011 | 00010010 | 1,2     | remaining counts from D    |
* | G = E + F             | 00100010 | 2,2     | # of 1s in each 4-bit of A |
* | H = G & 00001111      | 00000010 | 2       | every other count from G   |
* | I = (G>>4) & 00001111 | 00000010 | 2       | remaining counts from G    |
* | J = H + I             | 00000100 | 4       | No. of 1s in A             |
* Hence A have 4 1s.
*
* [1] http://en.wikipedia.org/wiki/Hamming_weight
*
* =============================================
*/
#include

typedef unsigned int UINT32;

const UINT32 c2m1 = 0×1; // 01

const UINT32 c4m1 = 0×5;  //0101
const UINT32 c4m2 = 0×3;  //0011

const UINT32 c8m1 = 0×55; //01010101
const UINT32 c8m2 = 0×33; //00110011
const UINT32 c8m4 = 0×0f; //00001111

const UINT32 c16m1 = 0×5555; //0101010101010101
const UINT32 c16m2 = 0×3333; //0011001100110011
const UINT32 c16m4 = 0×0f0f; //0000111100001111
const UINT32 c16m8 = 0×00ff; //0000000011111111

const UINT32 c32m1  = 0×55555555;  // 01010101010101010101010101010101
const UINT32 c32m2  = 0×33333333;  // 00110011001100110011001100110011
const UINT32 c32m4  = 0×0f0f0f0f;  // 00001111000011110000111100001111
const UINT32 c32m8  = 0×00ff00ff;  // 00000000111111110000000011111111
const UINT32 c32m16 = 0×0000ffff;  // 00000000000000001111111111111111
/*
const UINT32 c64m1  = 0×5555555555555555; //
const UINT32 c64m2  = 0×3333333333333333; //
const UINT32 c64m4  = 0×0f0f0f0f0f0f0f0f; //
const UINT32 c64m8  = 0×00ff00ff00ff00ff; //
const UINT32 c64m16 = 0×0000ffff0000ffff; //
const UINT32 c64m32 = 0×00000000ffffffff; //
*/
int popcount_2(UINT32 x)
{
x = (x & c2m1) + ((x>>1) & c2m1);
return (int)x;
}

int popcount_4(UINT32 x)
{
x = (x & c4m1) + ((x>>1) & c4m1);
x = (x & c4m2) + ((x>>2) & c4m2);
return (int)x;
}

int popcount_8(UINT32 x)
{
x = (x & c8m1) + ((x>>1) & c8m1);
x = (x & c8m2) + ((x>>2) & c8m2);
x = (x & c8m4) + ((x>>4) & c8m4);
return (int)x;
}

int popcount_16(UINT32 x)
{
x = (x & c16m1) + ((x>>1) & c16m1);
x = (x & c16m2) + ((x>>2) & c16m2);
x = (x & c16m4) + ((x>>4) & c16m4);
x = (x & c16m8) + ((x>>8) & c16m8);
return (int)x;
}

int popcount_32(UINT32 x)
{
x = (x & c32m1) + ((x >> 1) & c32m1);
x = (x & c32m2) + ((x >> 2) & c32m2);
x = (x & c32m4) + ((x >> 4) & c32m4);
x = (x & c32m8) + ((x >> 8) & c32m8);
x = (x & c32m16) + ((x >> 16) & c32m16);
return (int)x;
}
/*
int popcount_64(UINT32 x)
{
x = (x & c64m1) + ((x >> 1) & c64m1);
x = (x & c64m2) + ((x >> 2) & c64m2);
x = (x & c64m4) + ((x >> 4) & c64m4);
x = (x & c64m8) + ((x >> 8) & c64m8);
x = (x & c64m16) + ((x >> 16) & c64m16);
x = (x & c64m32) + ((x >> 32) & c64m32);
return (int)x;
}*/

/*笨算法,呵呵,但是肯定正确,用来验证比较*/

int my(UINT32 x)
{
int nCount = 0;
int i = 1;
for(i = 1; i != 0×80000000 ; i=i<<1)
{
//printf(”0x%x”,i);
if(x&i)
nCount++;
}
return nCount;
}

int main()
{
UINT32 intx= 0;
printf(”start!\n”);

printf(”List for 2 bit number:\n”);
for(intx = 0; intx!=0×3; intx++)
{
if(my(intx) != (int)popcount_2(intx))
{
printf(”No.%d : real count %d; popcount_2 = %d\n”,intx,my(intx),popcount_2(intx));
}
}

printf(”List for 4 bit number:\n”);
for(intx = 0; intx!=0xf; intx++)
{
if(my(intx) != (int)popcount_4(intx))
{
printf(”No.%d : real count %d; popcount_4 = %d\n”,intx,my(intx),popcount_4(intx));
}
}

printf(”List for 8 bit number:\n”);
for(intx = 0; intx!=0xff; intx++)
{
if(my(intx) == (int)popcount_8(intx))
{
printf(”No.%d : real count %d; popcount_8 = %d\n”,intx,my(intx),popcount_8(intx));
}
}

printf(”List for 16 bit number:\n”);
for(intx = 0; intx!=0xffff; intx++)
{
if(my(intx) != (int)popcount_16(intx))
{
printf(”No.%d : real count %d; popcount_16 = %d\n”,intx,my(intx),popcount_16(intx));
}
}

printf(”List for 32 bit number:\n”);
for(intx = 0; intx!=0xffffffff; intx++)
{
if(my(intx) != (int)popcount_32(intx))
{
printf(”No.%d : real count %d; popcount_32 = %d\n”,intx,my(intx),popcount_32(intx));
}
}

printf(”finish!\n”);
return 0;
}

第三篇摘自:http://tech.e800.com.cn/articles/2009/526/1243306374080_1.html

 

是不是大长见识呢?其实对于我们电工的同学来说,与我们最接近的应该是那个调用SSE4指令集的算法,够邪恶的~

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值