素数定理:
给出从整数中抽到素数的概率。从不大于n的自然数随机选一个,它是素数的概率大约是1/ln n。也就是说在不大于n的自然数里,总共的素数为 n/lgn。
筛法:
用筛法求素数的基本思想是(本质上也能算是一种预处理):把从1开始的、某一范围内的正整数从小到大顺序排列, 1不是素数,首先把它筛掉。剩下的数中选择最小的数是素数,然后去掉它的倍数。依次类推,直到筛子为空时结束。如有:1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30。
1不是素数,去掉。剩下的数中2最小,是素数,去掉2的倍数,余下的数是:3 5 7 9 11 13 15 17 19 21 23 25 27 29 。剩下的数中3最小,是素数,去掉3的倍数,如此下去直到所有的数都被筛完,求出的素数为:2 3 5 7 11 13 17 19 23 29。
题目:第十万零二个素数
请问,第100002(十万零二)个素数是多少? 请注意:“2” 是第一素数,“3” 是第二个素数,依此类推。
代码:
public class 第十万零二个素数 {
public static void main(String[] args) {
long now = System.currentTimeMillis();
// nlognlogn
f(100002);
System.out.println("耗时:" + (System.currentTimeMillis() - now) + "ms");
/*============Java自带的api==========*/
now = System.currentTimeMillis();
BigInteger bigInteger = new BigInteger("1");
for (int i = 1; i <= 100002; i++) {
bigInteger = bigInteger.nextProbablePrime();
}
System.out.println(bigInteger);
System.out.println("耗时:" + (System.currentTimeMillis() - now) + "ms");
/*==========朴素解法=========*/
now = System.currentTimeMillis();
int count = 0;
long x = 2;
while(count<100002){
if (isPrime(x)) {
count++;
}
x++;
}
System.out.println(x-1);
System.out.println("耗时:" + (System.currentTimeMillis() - now) + "ms");
}
public static boolean isPrime(long num){
for (int i = 2; i*i <= num; i++) {
if (num%i==0) {
return false;
}
}
return true;
}
/**
*
* @param N 第N个素
*/
private static void f(int N){
int n = 2;
// 自然数n之内的素数个数n/ln(n)
// 得到整数范围
while(n/Math.log(n)<N){
n++;
}
int []arr = new int[n];
int x = 2;
while(x<n){
if (arr[x]!=0) {
x++;
continue;
}
int k=2;
//对每个x,我们从2倍开始,对x的k倍,全部标记为-1
while(x*k<n){
arr[x*k] = -1;
k++;
}
x++;
}
// System.out.println(arr);
// 筛完之后,这个很长的数组里面非素数下标对应的值都是-1
int sum = 0;
for (int i = 2; i < arr.length; i++) {
// 是素数,计数+1
if (arr[i] == 0) {
// System.out.println(i);
sum++;
}
if (sum == N) {
System.out.println(i);
return;
}
}
}
}
结果: