11、人工智能
.
Estrellas_
I am the king of the world.
展开
-
Python中文文本聚类
简介 一 切词 二 去除停用词 三 构建词袋空间VSMvector space model 四 將单词出现的次数转化为权值TF-IDF 五 用K-means算法进行聚类 六 总结简介查看百度搜索中文文本聚类我失望的发现,网上竟然没有一个完整的关於python实现的中文文本聚类(乃至搜索关键词python 中文文本聚类也是如此),网上大部分是关於文本聚类的...转载 2020-04-15 01:24:24 · 2512 阅读 · 0 评论 -
主成分分析(Principal components analysis)-最小平方误差解释
原文链接:https://www.cnblogs.com/jerrylead/archive/2011/04/18/2020216.html接上篇3.2 最小平方误差理论 假设有这样的二维样本点(红色点),回顾我们前面探讨的是求一条直线,使得样本点投影到直线上的点的方差最大。本质是求直线,那么度量直线求的好不好,不仅仅只有方差最大化的方法。再回想我们最开始学...转载 2020-02-21 00:00:12 · 1098 阅读 · 0 评论 -
主成分分析(Principal components analysis)-最大方差解释
原文链接:https://www.cnblogs.com/jerrylead/archive/2011/04/18/2020209.html 在这一篇之前的内容是《Factor Analysis》,由于非常理论,打算学完整个课程后再写。在写这篇之前,我阅读了PCA、SVD和LDA。这几个模型相近,却都有自己的特点。本篇打算先介绍PCA,至于他们之间的关系,只能是边学边体会了。PCA...转载 2020-02-20 23:58:17 · 347 阅读 · 0 评论 -
第2章 k-近邻算法
原文链接:https://github.com/apachecn/AiLearning/blob/master/docs/ml/2.k-%E8%BF%91%E9%82%BB%E7%AE%97%E6%B3%95.mdKNN 概述k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法。一句话总结:近朱者赤近墨者...转载 2020-02-20 21:15:05 · 362 阅读 · 0 评论 -
第 10 章 K-Means(K-均值)聚类算法
原文链接:https://github.com/apachecn/AiLearning/blob/master/docs/ml/10.k-means%E8%81%9A%E7%B1%BB.md聚类聚类,简单来说,就是将一个庞杂数据集中具有相似特征的数据自动归类到一起,称为一个簇,簇内的对象越相似,聚类的效果越好。它是一种无监督的学习(Unsupervised Learning)方法,...转载 2020-02-20 20:48:40 · 626 阅读 · 0 评论 -
第13章 利用 PCA 来简化数据
降维技术场景我们正通过电视观看体育比赛,在电视的显示器上有一个球。 显示器大概包含了100万像素点,而球则可能是由较少的像素点组成,例如说一千个像素点。 人们实时的将显示器上的百万像素转换成为一个三维图像,该图像就给出运动场上球的位置。 在这个过程中,人们已经将百万像素点的数据,降至为三维。这个过程就称为降维(dimensionality reduction)数据显示 并非大...转载 2020-02-20 20:37:17 · 481 阅读 · 0 评论 -
《机器学习实战》读书笔记-索引
原文地址:https://my.oschina.net/zenglingfan/blog/179525以下是 《机器学习实战》读书笔记的索引, 每篇文章都包括算法描述及详尽的代码注释.《机器学习实战 (Mation Learning in Action)》【豆瓣】分类 监督学习 第2章 K-近邻算法(KNN) 第3章 决策树 第4章 朴素贝叶斯 第...转载 2020-02-20 20:29:54 · 221 阅读 · 0 评论 -
K-Means Clustering 笔记
本文地址:https://my.oschina.net/zenglingfan/blog/178356K-Means Clustering(k均值聚类算法) 属于无监督学习算法, 它可以发现 k 个不同的簇, 每个簇的质心采用簇中所含值的均值计算而成.优点 容易实现 缺点 可能收敛到局部最小值, 在大规模数据集上收敛较慢 适用数据类型 ...转载 2020-02-20 20:25:15 · 369 阅读 · 0 评论