简介
混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。
一句话解释版本:
混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。
数据分析与挖掘体系位置
混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外,混淆矩阵多用于判断分类器(Classifier)的优劣,适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。
在分类型模型评判的指标中,常见的方法有如下三种:
- 混淆矩阵(也称误差矩阵,Confusion Matrix)
- ROC曲线
- AUC面积
本篇主要介绍第一种方法,即混淆矩阵,也称误差矩阵。
此方法在整个数据分析与挖掘体系中的位置如下图所示。
混淆矩阵的定义
混淆矩阵(Confusion Matrix),它的本质远没有