4.4.2分类模型评判指标(一) - 混淆矩阵(Confusion Matrix)

混淆矩阵是衡量分类模型准确度的重要工具,包括True Positive, False Negative, False Positive和True Negative四个指标。通过二级指标Accuracy、Precision、Recall和Specificity,以及三级指标F1-Score,可以更全面地评估模型性能。本文详细介绍了混淆矩阵的概念、计算方法和应用实例。" 113453436,10539511,卷积神经网络在图像局部风格迁移的应用,"['神经网络', '计算机视觉', '图像处理', '风格迁移', '深度学习']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

混淆矩阵是ROC曲线绘制的基础,同时它也是衡量分类型模型准确度中最基本,最直观,计算最简单的方法。

一句话解释版本:

混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵。

 

 

数据分析与挖掘体系位置

混淆矩阵是评判模型结果的指标,属于模型评估的一部分。此外,混淆矩阵多用于判断分类器(Classifier)的优劣,适用于分类型的数据模型,如分类树(Classification Tree)、逻辑回归(Logistic Regression)、线性判别分析(Linear Discriminant Analysis)等方法。

在分类型模型评判的指标中,常见的方法有如下三种:

  1. 混淆矩阵(也称误差矩阵,Confusion Matrix)
  2. ROC曲线
  3. AUC面积

本篇主要介绍第一种方法,即混淆矩阵,也称误差矩阵。

此方法在整个数据分析与挖掘体系中的位置如下图所示。

 

混淆矩阵的定义

混淆矩阵(Confusion Matrix),它的本质远没有

评论 41
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值