pytest 之数据驱动

本文介绍了四种在Python测试中使用数据驱动的方法:pytest的@pytest.mark.parametrize装饰器、CSV/JSON文件作为数据源、pytest_generate_tests钩子以及第三方插件的应用。强调了测试数据的代表性、维护性和更新的重要性。
摘要由CSDN通过智能技术生成

以下有4种数据驱动的方法:

1. 使用 @pytest.mark.parametrize 装饰器

@pytest.mark.parametrize 是 pytest 中用于数据驱动测试的最常用装饰器。它允许你为测试函数提供多组输入数据和期望输出。

import pytest  
  
@pytest.mark.parametrize("input, expected", [  
    (1, 2),  
    (2, 4),  
    (3, 6),  
])  
def test_multiply(input, expected):  
    assert input * 2 == expected

2. 使用 CSV 或 JSON 文件作为数据源

如果测试数据存储在 CSV 或 JSON 文件中,可以使用 Python 的标准库(如 csv 或 json)来读取数据,并在测试函数中使用这些数据。

例如,假设有一个 CSV 文件 test_data.csv,内容如下:

inputexpected
12
24
36

你可以这样读取并使用数据:


import csv  
import pytest  
  
@pytest.mark.parametrize("input, expected", [  
    tuple(row) for row in csv.reader(open("test_data.csv")) if row  # Skip empty rows  
])  
def test_multiply(input, expected):  
    assert int(input) * 2 == int(expected)

3. 使用 pytest_generate_tests 钩子

对于更复杂的场景,你可以使用 pytest_generate_tests 钩子来自定义数据生成逻辑。这通常在你的 conftest.py 文件中完成。

4. 使用第三方插件

还有一些第三方插件可以帮助你实现更复杂的数据驱动测试,例如 pytest-cases。

注意事项

  • 当使用数据驱动测试时,确保测试数据具有代表性,能够覆盖各种边界情况和异常情况。
  • 尽量避免在测试函数中使用硬编码的值,而是使用参数化的输入和期望输出。
  • 保持测试数据的可维护性,定期审查和更新测试数据,以确保其与代码的实际需求保持一致。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值