桶排序

转载至:http://blog.csdn.net/cauchyweierstrass/article/details/49919559


桶排序

桶排序(Bucket Sort)假设输入数据服从均匀分布,然后将输入数据均匀地分配到有限数量的桶中,然后对每个桶再分别排序,对每个桶再使用插入排序算法,最后将每个桶中的数据有序的组合起来。前面了解到基数排序假设输入数据属于一个小区间内的整数,而桶排序则是假设输入是由一个随机过程生成,该过程将元素均匀的分布在一个区间[a,b]上。由于桶排序和计数排序一样均对输入的数据进行了某些假设限制,因此比一般的基于比较的排序算法复杂度低。

桶排序过程

1.初始化装入连续区间元素的n个桶,每个桶用来装一段区间中的元素。

2.遍历待排序的数据,将其映射到对应的桶中,保证每个桶中的元素都在同一个区间范围中。

3.对每个桶进行排序,最终将所有桶中排好序的元素连起来。


桶排序其中也蕴含着分治的策略,联想之前的计数排序,基数排序就像是桶排序的一个特例,一个数据一个桶。并且和散列(哈希,hash)似乎也有千丝万缕的关系。

桶排序的实现

  1. public int[] buketSort(int[] array, int backetSize) {  
  2.     int[] result = new int[array.length];  
  3.     Node[] bucket = new Node[backetSize];  
  4.     for (int i = 0; i < bucket.length; i++) {  
  5.         bucket[i] = new Node(); // 带头结点  
  6.     }  
  7.     for (int i = 0; i < array.length; i++) {  
  8.         int bucketIndex = hash(array[i]);  
  9.         Node node = new Node(array[i]);  
  10.         Node p = bucket[bucketIndex];  
  11.         if (p.next == null) {// 没有元素  
  12.             p.next = node;  
  13.         } else {// 已经有一个元素  
  14.             while (p.next != null && p.next.data <= node.data) {  
  15.                 p = p.next;  
  16.             } // 跳出循环时候 该值小于下一个元  
  17.             node.next = p.next;  
  18.             p.next = node;  
  19.         }  
  20.     }  
  21.     int j = 0;  
  22.     for (int i = 0; i < bucket.length; i++) // 确定次数  
  23.         for (Node p = bucket[i].next; p != null; p = p.next) // n/m  
  24.             result[j++] = p.data;  
  25.     return result;  
  26. }  
  27.   
  28. private int hash(int value) {  
  29.     return value / 10;  
  30. }  
public int[] buketSort(int[] array, int backetSize) {
	int[] result = new int[array.length];
	Node[] bucket = new Node[backetSize];
	for (int i = 0; i < bucket.length; i++) {
		bucket[i] = new Node(); // 带头结点
	}
	for (int i = 0; i < array.length; i++) {
		int bucketIndex = hash(array[i]);
		Node node = new Node(array[i]);
		Node p = bucket[bucketIndex];
		if (p.next == null) {// 没有元素
			p.next = node;
		} else {// 已经有一个元素
			while (p.next != null && p.next.data <= node.data) {
				p = p.next;
			} // 跳出循环时候 该值小于下一个元
			node.next = p.next;
			p.next = node;
		}
	}
	int j = 0;
	for (int i = 0; i < bucket.length; i++) // 确定次数
		for (Node p = bucket[i].next; p != null; p = p.next) // n/m
			result[j++] = p.data;
	return result;
}

private int hash(int value) {
	return value / 10;
}

桶排序的性能

时间消耗包括两部分一部分为初始化桶,连接排好序的桶,其时间复杂度为O(n) 一般有m<n  (m个桶)
另一部分为对桶中的元素进行排序,这部分的复杂度,通过代码中的for和while循环直接看不太容易,这样考虑:每个桶里面有ni个元素,对ni个元素进行插入排序的耗时为O(ni^2)。

于是T(n)=O(n)+∑O(ni^2),平均意义下认为ni=n/m,于是有T(n)=O(n)+n*O((n/m)^2)=O(n^2/m)+O(n)

当n=m时,T(n)=O(n)+O(n)=O(n)

对于每个桶采用其他的排序算法:m个桶,每个桶中的元素平均假设有n/m个,在上面进行基于比较的排序,复杂度不会低于n*O(n/m*lg(n/m)),平均意义下每个桶中的元素有n/m个,O(m * n/m *lg(n/m) = O(n*lg(n/m)),所以总的时间复杂度为T(n)=O(n+n*lg(n/m))

当m=n时时间复杂度为O(n),此时和计数排序一样,桶数量越多,时间效率越高,然而桶数量越多占用空间也就越大。

如上面后插链表,容易得到桶排序是稳定

测试

  1. public static void main(String[] args) {  
  2.     int[] array = { 15902576475832678426123956,  
  3.             985179473967 };  
  4.     int[] result = buketSort(array, 10);  
  5.     for (int i : result) {  
  6.         System.out.print(i + " ");  
  7.     }  
  8. }  
public static void main(String[] args) {
	int[] array = { 15, 90, 25, 76, 47, 58, 32, 67, 84, 26, 12, 3, 9, 56,
			98, 51, 79, 47, 39, 67 };
	int[] result = buketSort(array, 10);
	for (int i : result) {
		System.out.print(i + " ");
	}
}

输出

  1. 3 9 12 15 25 26 32 39 47 47 51 56 58 67 67 76 79 84 90 98   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值