图论
OrdinaryCrazy
这里是张劲暾的CSDN博客
展开
-
n维立方体独立数
n维立方体独立数 = n维立方体覆盖数 = 2^(n-1)如果我们将顶点用二进制表示之如:0维:01维:0 --- 12维:00 --- 01 | | 10 --- 113维:懒得画对于n>0,n维立方体就需要n位2进制数表示其顶点两顶点相邻当且仅当对应的二进制数仅有一位不同,那么一个与所有点都相邻的集合就可原创 2017-10-22 10:45:12 · 1227 阅读 · 0 评论 -
有顶容量约束的网络最大流
对于网络N{G,s,t,c(e)},其每个顶v∈V(G)-{s,t},有一个顶容量c(v),即通过v的流量不得超过c(v),c(v)∈{0,1,2,...},为这种有顶容量约束的网络设计求最大流函数的算法。解:(1)顶点解剖:对所有v∈V(G)-{s,t},剖分为两个新顶v1,v2:所有原来以v为头的边改为以v1为头所有原来以v为尾的边改为以v2为尾连接边v1v2,c(v1v2原创 2017-12-08 21:15:45 · 876 阅读 · 0 评论 -
证明:若G为简单图,且δ≥|V(G)|-2,则κ(G)=δ
证明:若G为简单图,且δ≥|V(G)|-2,则κ(G)=δ证明:δ=|V(G)|-1,G为完全图,κ(G)=|V(G)|-1=δ;δ=|V(G)|-2,假设κ(G)=|V(G)|-3,即删去|V(G)|-3个顶点后G不再连通,则有两种情况 ○-----○ ○ 或 ○原创 2017-11-24 19:58:31 · 7206 阅读 · 2 评论