经验总结

①不懂就问。
这一点做到的人并不多,古桥在这方面不但做到了,还更进一步,他会要求手下写出来“怎么办”和“为什么”,然后自己去检验,确实没有问题他会认真存档。

②主动。
在询问他人之前,他会主动去网上搜索答案;搞不清楚他会主动询问明白人;在他人提出思路之后,他会主动去寻找相关内容,或是看参考书,或是在网上搜索;在看到他人书面的回答后,他会主动去验证对错并落实相关知识点。
③严格。
我们知道,如果你是随便问问,别人也会随便对付着回答。古桥对别人回复的“怎么办”和“为什么”持十分认真的态度,并且在逻辑性易用性可再利用性等方面严格要求,完全当做工作的一部分来对待。
④总结。
在项目后期,他会根据这些文档来制作各种维护文档和用户文档,把整个系统和内容融会贯通。就这样,他当了一年项目经理后,在技术方面和管理方面都牢牢地站稳了脚跟,得到了各方的承认。然而,令我们惊讶的事实是——他从来没有独自专研过什么技术。
内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值