[NOI2009]变换序列

这道题九点开始看……一直写到现在……

事实证明混乱的代码不要接着写,最好是重新写一遍……

首先我觉得

每个点只能有对应的两个点,这个不是很明显的约束了开头后面的直接就推的出来吗?

那么很明显O(n^2)可以过……

然后我发现这是个每个点最多两条边的二分图

但是没有仔细想,依旧觉得它约束了第一个后面就都推的出来

立马写了一个……模拟二分图匹配……

然后wa……

仔细一想发现MS会出现当前局面没有可以约束的点的情况……比如图中存在两个连通分量……所以不行……

我写的程序无法像匈牙利那样修改增广路,so……

它必须是二分图匹配……

然后有一个字典序的问题……

因为每个点只有两个选择,从后往前暴力可过,假设先选字典序小的有没有完备匹配,有的话就可选……

优化一下就是从后往前,假设先选字典序小的有没有增广路


Linux下面不知道一个什么东西莫名其妙的定义了link……导致我临时replace了一下……


//Lib
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>

#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
#include<set>
#include<map>
#include<list>
using namespace std;
//Macro
#define	rep(i,a,b)	for(int i=a,tt=b;i<=tt;++i)
#define	drep(i,a,b)	for(int i=a,tt=b;i>=tt;--i)
#define	erep(i,e,x)	for(int i=x;i;i=e[i].next)
#define	irep(i,x)	for(typedef(x.begin()) i=x.begin();i!=x.end();i++)
#define	read()	(strtol(ipos,&ipos,10))
#define	sqr(x)	((x)*(x))
#define	pb	push_back
#define	PS	system("pause");
typedef	long long	ll;
typedef	pair<int,int>	pii;
const int oo=~0U>>1;
const double inf=1e100;
const double eps=1e-6;
string name="transform", in=".in", out=".out";
//Var
struct E
{
	int next,node;
}e[40008];
int n,tot,ans;
int s[10008],c[10008],h[20008];
int llink[20008],to[10008][2];
bool vis[20008];
void add(int a,int b)
{
	e[++tot].next=h[a];e[tot].node=b;h[a]=tot;
}
void Init()
{
	scanf("%d",&n);int x,y;
	rep(i,1,n)scanf("%d",s+i);
	rep(i,1,n)
	{
		x=i-s[i];if(x<=0)x+=n;
		y=i+s[i];if(y>n)y-=n;
		to[i][0]=min(x,y);to[i][1]=max(x,y);
		add(i,x+n);if(x!=y)add(i,y+n);
	}
}
bool DFS(int u)
{
	erep(i,e,h[u])
	{
		int v=e[i].node;
		if(vis[v]==0)
		{
			vis[v]=true;
			if(!llink[v]||DFS(llink[v]))
			{
				llink[v]=u;
				llink[u]=v;
				return true;
			}
		}
	}
	return false;
}
void Work()
{
	rep(i,1,n)
	{
		memset(vis,0,sizeof vis);
		if(DFS(i))ans++;
	}
	if(ans<n){printf("No Answer\n");return;}
	int x,y,tmp;
	drep(i,n,1)
	{
		if(to[i][0]+n!=llink[i])
		{
			x=to[i][0];y=to[i][1];tmp=llink[x+n];
			memset(vis,0,sizeof vis);
			vis[x+n]=true;llink[x+n]=i;llink[y+n]=0;
			if(DFS(tmp))llink[i]=x+n;
			else llink[x+n]=tmp,llink[y+n]=i;
		}
	}
	rep(i,1,n-1)printf("%d ",llink[i]-n-1);
	printf("%d\n",llink[n]-n-1);
}
int main()
{
//	freopen((name+in).c_str(),"r",stdin);
//	freopen((name+out).c_str(),"w",stdout);
	Init();
	Work();
//	PS;
	return 0;
}


阅读更多
换一批

没有更多推荐了,返回首页