opencv-python 疲劳驾驶检测

使用dlib库检测68个人脸关键点,通过计算眼睛和嘴巴关键点的欧氏距离来判断疲劳驾驶状态。当眼睛点间距低于预设阈值并持续一定帧数时,系统判断为疲劳驾驶。同时注意到打哈欠也可以作为疲劳指标,但嘴巴部分的优化未进行深入。整个过程主要是参数调整和优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在别人的代码上修改得到的,源代码好像不太准确,主要的原理就是用dlib工具找到68个人脸关键点,然后计算点之间的欧氏距离,具体得看你想要实现什么功能

我主要检测眼睛上的点和嘴巴上的点,当眼睛上的某几个点之间的距离小于设置的阈值几帧后,判断为打盹,也就是疲劳驾驶,有时候人瞌睡的时候也会打哈欠,所以也检测了嘴巴的点,但没有做优化,嘴巴部分还可以更进一步优化的,不过太花时间了,就先不做了,思路知道就行,果然搞这个最后都变成了调参。

# -*- coding: utf-8 -*-
#导入工具包
from scipy.spatial import distance as dist 
from collections import OrderedDict
import numpy as np
import argparse
import time
import dlib  #人脸识别相关
import cv2

FACIAL_LANDMARKS_68_IDXS = OrderedDict([  #由于原生的字典是无序的,现在用这个来提供有序的地点
	("mouth", (48, 68)),
	("right_eyebrow", (17, 22)),
	("left_eyebrow", (22, 27)),
	("right_eye", (36, 42)),
	("left_eye", (42, 48)),
	("nose", (27, 36)),
	("jaw", (0, 17))
])

# http://vision.fe.uni-lj.si/cvww2016/proceedings/papers/05.pdf
def eye_aspect_ratio(eye):
	# 计算距离,竖直的
	A = dist.euc
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值