PAT甲专题-----树

A1020 Tree Traversals

/*
题意:由二叉树的后序遍历和中序遍历求得二叉树的层序遍历
题解:
·定义结点结构体
·由后序和中序遍历序列构造树 
·对树进行层序遍历BFS 
*/ 
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn = 50;

//定义结点结构体
struct node {
	int data;
	node* lchild;
	node* rchild;
}; 

int pre[maxn],in[maxn],post[maxn]; //先序、中序及后序 
int n; //结点个数 

//当前二叉树的后序序列区间为[postL,postR],中序序列区间为[inL,inR]
//create函数返回构建出的二叉树的根结点地址
node* create(int postL,int postR,int inL,int inR){
	if(postL > postR){
		return NULL; //若后序序列长度小于等于0,则直接返回 
	}
	node* root = new node; //新建一个新的结点,用来存放当前二叉树的根结点
	root->data = post[postR]; //新结点的数据域为根结点的值
	int k;
	for(k = inL; k <= inR; k++){
		if(in[k] == post[postR]){  //在中序序列中找到in[k] == pre[L]的结点 
			break; 
		}
	} 
	int numLeft = k - inL;// 左子树的结点个数
	//返回左子树的根结点地址,赋值给root的左指针
	root->lchild = create(postL,postL+numLeft-1,inL, k-1);
	//返回右子树的根结点地址,赋值给root的右指针
	root->rchild = create(postL+numLeft, postR-1,k+1,inR);
	return root; //返回根结点地址 
} 

int num = 0; //已输出的结点个数
void BFS(node* root){
	queue<node*> q; //注意队列里是存地址
	q.push(root); //根结点地址入队
	while(!q.empty()){
		node* now = q.front(); //取出队首元素
		q.pop();
		printf("%d",now->data); //访问队首元素
		num++;
		if(num < n) printf(" ");
		if(now->lchild != NULL) q.push(now->lchild); //左子树非空
		if(now->rchild != NULL) q.push(now->rchild);//右子树非空 
	} 
}

int main(){
	scanf("%d",&n);
	for(int i = 0; i < n; i++){
		scanf("%d",&post[i]);
	}
	for(int i = 0; i < n; i++){
		scanf("%d",&in[i]);
	}
	node* root = create(0,n-1,0,n-1); //建树
	BFS(root); //层序遍历
	return 0; 
	} 

 

 

A1086 Tree Traversals Again

/*
·题意:由先序和中序序列得出后序序列
·题解:注意从输入中得出先序和中序序列。push为先序,pop为后序。
*/
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
const int maxn = 50;

struct node{
    int data;
    node* lchild;
    node* rchild;
};

int pre[maxn],in[maxn];
int n;

node* create(int preL,int preR,int inL,int inR){
    if(inL > inR){
        return NULL;
    }
    node* root = new node;
    root->data = pre[preL];
    int k;
    for(k = 0; k < inR; k++){
        if(pre[preL] == in[k]) break;
    }
    int numLeft = k - inL;
    root->lchild = create(preL+1,preL+numLeft,inL,k-1);
    root->rchild = create(preL+numLeft+1,preR,k+1,inR);
    return root;
}

int num = 0;
void postorder(node* root){
    if(root == NULL){
        return ;
    }
    postorder(root->lchild);
    postorder(root->rchild);
    printf("%d",root->data);
    num++;
    if(num < n) printf(" ");
}

int main(){
    scanf("%d",&n);
    char str[5];
    stack<int> st;
    int x,preIndex=0,inIndex = 0;
    for(int i = 0; i < n*2; i++){
        scanf("%s",str);
        if(strcmp(str,"Push") == 0){
            scanf("%d",&x);
            pre[preIndex++] = x;
            st.push(x);
        } else{
            in[inIndex++] = st.top();
            st.pop();
        }
    }

    node* root = create(0,n-1,0,n-1);
    postorder(root);
    return 0;
}

A1102 Invert a Binary Tree

题意:反转二叉树然后输出层序遍历序列和中序遍历序列。

题解:反转二叉树的操作只需要进行后序遍历,在后序遍历访问根结点时交换lchild和rchild即可。

这道题刚开始输出格式我没看懂。。。

Then N lines follow, each corresponds to a node from 0 to N−1, and gives the indices of the left and right children of the node.  

意思:每行对应结点0-n-1,第n行的内容是结点n-1的左右孩子结点。 类似于数组,有两个元素,下标和下标所对应的值。

#include<cstdio>
#include<queue>
#include<algorithm>
using namespace std;
const int maxn = 110;

//二叉树的静态写法
struct node{
	int lchild,rchild;
}Node[maxn]; 
bool notRoot[maxn] = {false}; //记录是否不是根结点,初始均是根结点
int n, num = 0; //n为结点个数,num为已经输出的结点个数
//print函数输出结点id的编号
void print(int id){
	printf("%d",id); //输出id 
	num++; //已经输出的结点个数+1
	if(num < n) printf(" ");
	else printf("\n"); 
} 

//中序遍历
void inOrder(int root){
	if(root == -1) return ;
	inOrder(Node[root].lchild);
	print(root);
	inOrder(Node[root].rchild); 
} 

//层序遍历
void BFS(int root){
	queue<int> q; // 注意队列里存的是地址
	q.push(root); // 根结点地址入队
	while(!q.empty()){
		int now = q.front(); //取出队首元素
		q.pop();
		print(now);
		if(Node[now].lchild != -1) q.push(Node[now].lchild);
		if(Node[now].rchild != -1) q.push(Node[now].rchild); 
	} 
} 

//后序遍历,反转二叉树
void postOrder(int root){
	if(root == -1) return ;
	postOrder(Node[root].lchild);
	postOrder(Node[root].rchild);
	swap(Node[root].lchild,Node[root].rchild); //交换左右孩子结点 
} 

//将输入的字符转换为-1或结点编号
int strToNum(char c){
	if(c == '-') return -1; //'-'表示没有孩子结点,记为-1
	else{
		notRoot[c - '0'] = true; //标记c不是根结点
		return c-'0'; //返回结点编号 
	} 
} 

//寻找根结点编号
int findRoot(){
	for(int i = 0; i < n; i++){
		if(notRoot[i] == false){
			return i; //是根结点,返回i 
		}
	}
} 

int main(){
	char lchild,rchild;
	scanf("%d",&n); //结点个数
	for(int i = 0; i < n; i++){
		scanf("%*c%c %c",&lchild,&rchild); //左右孩子结点 
		Node[i].lchild = strToNum(lchild);
		Node[i].rchild = strToNum(rchild); 
	} 
	int root = findRoot(); //获得根结点编号
	postOrder(root); //后序遍历,反转二叉树
	BFS(root); //输出层序遍历序列
	num = 0;
	inOrder(root); //输出中序遍历序列
	return 0; 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值