hdu #3507 Print Article(dp+斜率优化)

我决定改变我的博客版式。。。
标签:dp,斜率优化
这其实是一道斜率优化的模版题(虽然说我卡了很久才AC),话不多说先上题意。
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507

Print Article
Time Limit: 9000/3000 MS (Java/Others) Memory Limit: 131072/65536 K (Java/Others)

Problem Description
Zero has an old printer that doesn’t work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear, so Zero use a cost to evaluate this degree.
One day Zero want to print an article which has N words, and each word i has a cost Ci to be printed. Also, Zero know that print k words in one line will cost

(i=1kCi)2+M

M is a const number.
Now Zero want to know the minimum cost in order to arrange the article perfectly.

Input
There are many test cases. For each test case, There are two numbers N and M in the first line (0 ≤ n ≤ 500000, 0 ≤ M ≤ 1000). Then, there are N numbers in the next 2 to N + 1 lines. Input are terminated by EOF.

Output
A single number, meaning the mininum cost to print the article.

Sample Input
5 5 5 9 5 7 5

Sample Output
230
题意翻译成中文,大意就是把n个数分成若干块,对于每一块计算

(i=1kCi)2+M
然后使该值的和最小即可。
我们可以很容易地想到用dp,直接暴力循环时间复杂度为O(n^3),这显然是不能接受的,所以我们可以利用前缀和将复杂度降到O(n^2),下面贴代码(注意这不是重点!!!)

#include<cstdio>
#include<algorithm>
#include<cstring>
#define s(x,y) (a[y]-a[x])
#define maxn 500000
using namespace std;
int f[maxn],a[maxn],c[maxn],i,j,n,m;
int main()
{
    while ((scanf("%d%d",&n,&m))!=EOF)
    {
        memset(f,0x7f,sizeof(f)); f[0]=0; a[0]=0;
        for (i=1;i<=n;i++) scanf("%d",&c[i]),a[i]=a[i-1]+c[i];
        for (i=1;i<=n;i++)
            for (j=0;j<i;j++)
                f[i]=min(f[i],f[j]+s(j,i)*s(j,i)+m);
        printf("%d\n",f[n]);
    }
    return 0;
}

很明显对于题目中n<=500000,还有多组数据,这肯定会TLE,所以我们需要用斜率优化将时间复杂度降到O(n)。(这才是重点)
根据上面的代码,在这我们令sum[i]表示前i项的和,在第i个循环中,如果点j优于点k,那么有

dp[j]+(sum[i]sum[j])2+m<=dp[k]+(sum[i]sum[k])2+m

将上式化简,可以得到(具体过程请大家自己推算一遍)
(dp[j]+sum[j]2)(dp[k]+sum[k]2)2(sum[j]sum[k])<=sum[i]

再令y(k)=dp[k]+sum[k]^2,x(k)=2sum[k],可得
y(j)y(k)x(j)x(k)<=sum[i]

这就是所谓的“斜率”,如果上式成立,那么表明点j优于点k,那么以后都不用再去考虑点k了。需要一个队列去实现,具体看代码(注意计算过程中小于等于号的方向,很坑)

#include<cstdio>
#include<algorithm>
#include<cstring>
#define maxn 500050
#define y(r) (f[r]+a[r]*a[r])
#define x(r) (2*a[r])
#define up(r,t) (y(r)-y(t))
#define down(r,t) (x(r)-x(t))
#define dp(r,t) (f[t]+m+(a[t]-a[r])*(a[t]-a[r]))
using namespace std;
int f[maxn],a[maxn],c,i,n,m,q[maxn],head,tail,r,t;
int main()
{
    while ((scanf("%d%d",&n,&m))!=EOF)
    {
        a[0]=0; memset(f,0,sizeof(f)); memset(q,0,sizeof(q));
        for (i=1;i<=n;i++) scanf("%d",&c),a[i]=a[i-1]+c;
        head=tail=0; q[tail++]=0;
        for (i=1;i<=n;i++)
        {
            while (head+1<tail&&up(q[head+1],q[head])<=a[i]*down(q[head+1],q[head])) head++;
            f[i]=dp(i,q[head]);
            while (head+1<tail&&up(i,q[tail-1])*down(q[tail-1],q[tail-2])<=up(q[tail-1],q[tail-2])*down(i,q[tail-1])) tail--;
            q[tail++]=i;
        }
        printf("%d\n",f[n]);
    }
    return 0;
}

如有意见或建议,欢迎在评论区提出。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
数字乡村和智慧农业的数字化转型是当前农业发展的新趋势,旨在通过应用数字技术,实现农业全流程的再造和全生命周期的管理服务。中国政府高度重视这一领域的发展,提出“数字中国”和“乡村振兴”战略,以提升国家治理能力,推动城乡融合发展。 数字乡村的建设面临乡村治理、基础设施、产业链条和公共服务等方面的问题,需要分阶段实施《数字乡村发展战略纲要》来解决。农业数字化转型的需求包括满足市民对优质农产品的需求、解决产销对接问题、形成优质优价机制、提高农业劳动力素质、打破信息孤岛、提高农业政策服务的精准度和有效性,以及解决农业融资难的问题。 数字乡村建设的关键在于构建“1+3+4+1”工程,即以新技术、新要素、新商业、新农民、新文化、新农村为核心,推进数据融合,强化农业大数据的汇集功能。数字农业大数据解决方案以农业数字底图和数据资源为基础,通过可视化监管,实现区域农业的全面数字化管理。 数字农业大数据架构基于大数据、区块链、GIS和物联网技术,构建农业大数据中心、农业物联网平台和农村综合服务指挥决策平台三大基础平台。农业大数据中心汇聚各类涉农信息资源和业务数据,支持大数据应用。信息采集系统覆盖市、县、乡、村多级,形成高效的农业大数据信息采集体系。 农业物联网平台包括环境监测系统、视频监控系统、预警预报系统和智能控制系统,通过收集和监测数据,实现对农业环境和生产过程的智能化管理。综合服务指挥决策平台利用数据分析和GIS技术,为农业决策提供支持。 数字乡村建设包括三大服务平台:治理服务平台、民生服务平台和产业服务平台。治理服务平台通过大数据和AI技术,实现乡村治理的数字化;民生服务平台利用互联网技术,提供各类民生服务;产业服务平台融合政企关系,支持农业产业发展。 数字乡村的应用场景广泛,包括农业生产过程、农产品流通、农业管理和农村社会服务。农业生产管理系统利用AIoT技术,实现农业生产的标准化和智能化。农产品智慧流通管理系统和溯源管理系统提高流通效率和产品追溯能力。智慧农业管理通过互联网+农业,提升农业管理的科学性和效率。农村社会服务则通过数字化手段,提高农村地区的公共服务水平。 总体而言,数字乡村和智慧农业的建设,不仅能够提升农业生产效率和管理水平,还能够促进农村地区的社会经济发展,实现城乡融合发展,是推动中国农业现代化的重要途径。
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值