tensorflow实验七------MNIST手写数字识别进阶 多层神经网络与应用

载入数据

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline
print(tf.__version__)
mnist = tf.keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()

划分数据集

total_num = len(train_images)
valid_split = 0.2
train_num = int(total_num*(1-valid_split))
train_x = train_images[:train_num]
train_y = train_labels[:train_num]
valid_x =  train_images[train_num:]
valid_y = train_labels[train_num:]
test_x = test_images
test_y = test_labels

在这里插入图片描述

数据塑形

train_x = train_x.reshape(-1,784)
valid_x = valid_x.reshape(-1,784)
test_x = test_x.reshape(-1,784)

在这里插入图片描述

特征数据归一化

train_x = tf.cast(train_x/255.0,tf.float32)
valid_x = tf.cast(valid_x/255.0,tf.float32)
test_x = tf.cast(test_x/255.0,tf.float32)

在这里插入图片描述

标签数据独热编码

train_y = tf.one_hot(train_y,depth=10)
valid_y = tf.one_hot(valid_y,depth=10)
test_y = tf.one_hot(test_y,depth=10)

在这里插入图片描述

构建模型

Input_Dim = 784
H1_NN = 64
W1 = tf.Variable(tf.random.normal([Input_Dim,H1_NN],mean=0.0,stddev=1.0,dtype=tf.float32))
B1 = tf.Variable(tf.zeros([H1_NN]),dtype = tf.float32)

在这里插入图片描述

创建待优化变量

H2_NN = 32
W2 = tf.Variable(tf.random.normal([H1_NN,H2_NN],mean=0.0,stddev=1.0,dtype=tf.float32))
B2 = tf.Variable(tf.zeros([H2_NN]),dtype = tf.float32)
Output_Dim = 10
W3 = tf.Variable(tf.random.normal([H2_NN,Output_Dim],mean=0.0,stddev=1.0,dtype=tf.float32))
B3= tf.Variable(tf.zeros([Output_Dim]),dtype = tf.float32)
W = [W1,W2,W3]
B = [B1,B2,B3]

在这里插入图片描述

定义模型前向计算

def model(x, w, b):
    x = tf.matmul(x, w[0]) + b[0]
    x = tf.nn.relu(x)
    x = tf.matmul(x, w[1]) + b[1]
    x = tf.nn.relu(x)
    x = tf.matmul(x, w[2]) + b[2]
    pred = tf.nn.softmax(x)
    return pred

在这里插入图片描述

定义损失函数

定义交叉熵损失函数

def loss(x, y, w, b):
    pred = model(x, w, b)
    loss_ = tf.keras.losses.categorical_crossentropy(y_true=y, y_pred=pred)
    return tf.reduce_mean(loss_)

设置训练超参数

training_epochs = 20
batch_size = 50
learning_rate= 0.01

在这里插入图片描述

定义梯度计算函数

def grad(x, y, w, b):
    var_list = w + b;
    with tf.GradientTape() as tape:
        loss_ = loss(x, y, w, b)
    return tape.gradient(loss_,var_list)

在这里插入图片描述
选择优化器

optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate)

定义准确率

def accuracy(x,y,w,b):#定义准确模型
    pred = model(x,w,b)
    correct_prediction = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
    return tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

在这里插入图片描述
训练模型

steps = int(train_num/batch_size)#总次数

loss_list_train = []#定义函数
loss_list_valid = []
acc_list_train = []
acc_list_valid = []

for epoch in range (training_epochs):#循环
    for step in range(steps):
        xs = train_x[step*batch_size:(step+1)*batch_size]#训练模型的计算
        ys = train_y[step*batch_size:(step+1)*batch_size]
        
        grads = grad(xs,ys,W,B)#梯度计算
        optimizer.apply_gradients(zip(grads, W+B))
    
    loss_train = loss(train_x,train_y,W,B).numpy()
    loss_valid = loss(valid_x,valid_y,W,B).numpy()
    acc_train = accuracy(train_x,train_y,W,B).numpy()
    acc_valid = accuracy(valid_x,valid_y,W,B).numpy()
    loss_list_train.append(loss_train)
    loss_list_valid.append(loss_valid)
    acc_list_train.append(acc_train)
    acc_list_valid.append(acc_valid)
    print("epoch={:3d},train_loss={:.4f},train_acc={:.4f},val_loss={:.4f},val_acc={:.4f}".format(epoch+1,loss_train,acc_train,loss_valid,acc_valid))

在这里插入图片描述

plt.xlabel("Epochs")
plt.ylabel("Loss")
plt.plot(loss_list_train,'blue',label="Train Loss")
plt.plot(loss_list_valid,'red',label='Valid Loss')
plt.legend(loc=1)

在这里插入图片描述

plt.xlabel("Epochs")
plt.ylabel("Accuracy")
plt.plot(acc_list_train,'blue',label="Train Loss")
plt.plot(acc_list_valid,'red',label='Valid Loss')
plt.legend(loc=1)

在这里插入图片描述

acc_test = accuracy(test_x,test_y,W,B).numpy
print("Test accuracy:",acc_test)

在这里插入图片描述

def predict(x,w,b):#定义预测模型
    pred = model(x,w,b)
    result = tf.argmax(pred,1).numpy()
    return result

在这里插入图片描述

pred_test=predict(test_x,W,B)

在这里插入图片描述

pred_test[0]

在这里插入图片描述

import matplotlib.pyplot as plt
import numpy as np
def plot_images_labels_prediction(images,
                                 labels,
                                 preds,
                                 index=0,
                                 num=10):
    fig = plt.gcf() #获取当前的图表
    fig.set_size_inches(10,4)
    if num > 10:
        num = 10   #最多显示十个子图
    for i in range(0,num):
        ax = plt.subplot(2,5,i+1)  #获取当前要处理的子图
        
        ax.imshow(np.reshape(images[index],(28,28)),cmap='binary')
        
        title = "label=" + str(labels[index])
        if len(preds)>0:
            title +=",predict=" + str(labels[index])
            
        ax.set_title(title,fontsize=10)
        ax.set_xticks([]);
        ax.set_yticks([])
        index = index + 1
    plt.show()
plot_images_labels_prediction(test_images,test_labels,pred_test,10,10)

在这里插入图片描述

train_images = train_images / 255.0
test_images = test_images / 255.0
train_labels_ohe = tf.one_hot(train_labels,depth = 10).numpy()
test_labels_ohe = tf.one_hot(test_labels, depth = 10).numpy()

在这里插入图片描述

新建一个序列模型

model = tf.keras.models.Sequential()

添加输入层

model.add(tf.keras.layers.Flatten(input_shape=(28, 28)))

添加隐藏层

model.add(tf.keras.layers.Dense(units = 64,
                               kernel_initializer = 'normal',
                               activation = 'relu'))

在这里插入图片描述

model.add(tf.keras.layers.Dense(units = 32,
                               kernel_initializer = 'normal',
                               activation = 'relu'))

添加输出层

model.add(tf.keras.layers.Dense(10,activation = 'softmax'))

模型摘要

model.summary()

在这里插入图片描述

定义训练模式

model.compile(optimizer = 'adam',
             loss = 'categorical_crossentropy',
             metrics = ['accuracy'])

设置训练参数

train_epochs = 10
batch_size =30

模型训练

train_history=model.fit(train_images, train_labels_ohe,
                       validation_split = 0.2,
                       epochs = train_epochs,
                       batch_size = batch_size,
                       verbose = 2)

在这里插入图片描述

训练过程指标数据

train_history.history

在这里插入图片描述

训练过程指标可视化

import matplotlib.pyplot as plt
def show_train_history(train_history,train_metric,val_metric):
    plt.plot(train_history.history[train_metric])
    plt.plot(train_history.history[val_metric])
    plt.title('Train History')
    plt.ylabel(train_metric)
    plt.xlabel('Epoch')
    plt.legend(['train','validation'],loc='upper left')
    plt.show()
show_train_history(train_history,'loss','val_loss')

在这里插入图片描述

show_train_history(train_history,'accuracy','val_accuracy')

在这里插入图片描述

评估模型

test_loss,test_acc = model.evaluate(test_images,test_labels_ohe,verbose = 2)

模型的度量指标

yy=model.evaluate(test_images,test_labels_ohe,verbose=2)

在这里插入图片描述

yy
model.metrics_names

在这里插入图片描述

应用模型

test_pred = model.predict(test_images)
test_pred.shape

在这里插入图片描述

np.argmax(test_pred[0])

应用模型

test_pred = model.predict_classes(test_images)
test_pred[0]
test_labels[0]

在这里插入图片描述

  • 9
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值