题目链接:
http://acm.hdu.edu.cn/showproblem.php?pid=5492
题目大意:
一个N*M的矩阵,一个人从(1,1)走到(N,M),每次只能向下或向右走。求(N+M-1)ΣN+M-1(Ai-Aavg)2最小。Aavg为平均值。
(N,M<=30,矩阵里的元素0<=C<=30)
题目思路:
【动态规划】
首先化简式子,得原式=(N+M-1)ΣN+M-1(Ai2)-(ΣN+M-1Ai)2
f[i][j][k]表示走到A[i][j]格子上,此时前i+j-1个值得和(Σi+j-1Ai)为K的平方和(Σi+j-1Ai2)最小值。
向下或向右转移很好推。
由于每个格子的值<=30,K<=59*30=1770.总时间复杂度为O(N*M*K)
1 // 2 //by coolxxx 3 //#include<bits/stdc++.h> 4 #include<iostream> 5 #include<algorithm> 6 #include<string> 7 #include<iomanip> 8 #include<map> 9 #include<stack> 10 #include<queue> 11 #include<set> 12 #include<bitset> 13 #include<memory.h> 14 #include<time.h> 15 #include<stdio.h> 16 #include<stdlib.h> 17 #include<string.h> 18 //#include<stdbool.h> 19 #include<math.h> 20 #define min(a,b) ((a)<(b)?(a):(b)) 21 #define max(a,b) ((a)>(b)?(a):(b)) 22 #define abs(a) ((a)>0?(a):(-(a))) 23 #define lowbit(a) (a&(-a)) 24 #define sqr(a) ((a)*(a)) 25 #define swap(a,b) ((a)^=(b),(b)^=(a),(a)^=(b)) 26 #define mem(a,b) memset(a,b,sizeof(a)) 27 #define eps (1e-8) 28 #define J 10000 29 #define mod 1000000007 30 #define MAX 0x7f7f7f7f 31 #define PI 3.14159265358979323 32 #define N 44 33 using namespace std; 34 typedef long long LL; 35 int cas,cass; 36 int n,m,lll,ans; 37 LL aans; 38 int a[N][N]; 39 int sum; 40 int f[N][N][2004]; 41 void print() 42 { 43 int i,j,k; 44 for(i=0;i<=sum;i++) 45 printf("%d\n",f[n][m][i]); 46 } 47 int main() 48 { 49 #ifndef ONLINE_JUDGE 50 // freopen("1.txt","r",stdin); 51 // freopen("2.txt","w",stdout); 52 #endif 53 int i,j,k; 54 55 // for(scanf("%d",&cass);cass;cass--) 56 for(scanf("%d",&cas),cass=1;cass<=cas;cass++) 57 // while(~scanf("%s",s+1)) 58 // while(~scanf("%d",&n)) 59 { 60 mem(f,MAX); 61 sum=0; 62 scanf("%d%d",&n,&m); 63 for(i=1;i<=n;i++) 64 for(j=1;j<=m;j++) 65 scanf("%d",&a[i][j]); 66 f[0][1][0]=0; 67 for(i=1;i<=n;i++) 68 { 69 for(j=1;j<=m;j++) 70 { 71 for(k=a[i][j];k<=59*30;k++) 72 { 73 f[i][j][k]=min(f[i][j][k],f[i-1][j][k-a[i][j]]+sqr(a[i][j])); 74 f[i][j][k]=min(f[i][j][k],f[i][j-1][k-a[i][j]]+sqr(a[i][j])); 75 } 76 } 77 } 78 ans=MAX; 79 for(i=0;i<=59*30;i++) 80 { 81 if(f[n][m][i]==f[0][0][0])continue; 82 ans=min(ans,(n+m-1)*f[n][m][i]-sqr(i)); 83 } 84 printf("Case #%d: %d\n",cass,ans); 85 } 86 return 0; 87 } 88 /* 89 // 90 91 // 92 */