【题目链接】http://acm.hdu.edu.cn/showproblem.php?pid=5492
【解题报告】
很水的一道dp,赛场上队友a掉了。观察到每个格子的权值不超过30,所以路径总长度的范围为(0~1800),可以考虑枚举做。我们知道在方差公式中有这样一个代换:
sum(Ai-M)^2=sum(Ai^2)-N*M^2
两边同时乘以N后得到:
N*sum(Ai-M)^2=N*sum(Ai^2)- sum(Ai)^2;
所以对于确定的路径长度sum(Ai),应当尽可能使sum(Ai^2)小。
所以我们可以维护dp[i][j][S]这样一个量,表示走到(i,j)这个点,路径长度为S的最小的sum(Ai^2)。
所以转移方程为:
dp[i][j][S]=min( dp[i-1][j][S-mp[i][j]]+mp[i][j]*mp[i][j],
dp[i][j-1][S-mp[i][j]]+mp[i][j]*mp[i][j] );
要注意可以从上一个状态转移过来的前提条件是上一个状态可达。至此本题可解。
【参考代码】
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int INF=0x3f3f3f3f;
int N,M;
int dp[40][40][1810];
int mp[40][40];
int main()
{
int T,kase=0;
cin>>T;
while(T--)
{
cin>>N>>M;
memset(dp,0x3f,sizeof(dp));
for( int i=1; i<=N; i++ )
for( int j=1; j<=M; j++ )
cin>>mp[i][j];
dp[1][1][mp[1][1]]=mp[1][1]*mp[1][1];
for( int i=2; i<=M; i++ )
{
for( int S=mp[1][i]; S<=1800; S++ )
if( dp[1][i-1][S-mp[1][i]]!=INF )
dp[1][i][S]=dp[1][i-1][S-mp[1][i]]+mp[1][i]*mp[1][i];
}
for( int i=2; i<=N; i++ )
{
for( int S=mp[i][1]; S<=1800; S++ )
if( dp[i-1][1][S-mp[i][1]]!=INF )
dp[i][1][S]=dp[i-1][1][S-mp[i][1]]+mp[i][1]*mp[i][1];
}
for( int i=2; i<=N; i++ )
for( int j=2; j<=M; j++ )
{
for( int S=0; S<=1800; S++ )
{
if( dp[i][j-1][S-mp[i][j]]!=INF )dp[i][j][S]=min( dp[i][j][S], dp[i][j-1][S-mp[i][j]]+mp[i][j]*mp[i][j] );
if( dp[i-1][j][S-mp[i][j]]!=INF )dp[i][j][S]=min( dp[i][j][S], dp[i-1][j][S-mp[i][j]]+mp[i][j]*mp[i][j] );
}
}
int ans=INF;
for( int i=0; i<=1800; i++ )
{
if( dp[N][M][i]!=INF )
ans=min( ans, (N+M-1)*dp[N][M][i]-i*i );
}
printf("Case #%d: %d\n",++kase,ans);
}
return 0;
}