HDU 5492 Find a path(2015 ACM/ICPC Asia Regional Hefei Online )

13 篇文章 0 订阅

【题目链接】http://acm.hdu.edu.cn/showproblem.php?pid=5492

【解题报告】
很水的一道dp,赛场上队友a掉了。观察到每个格子的权值不超过30,所以路径总长度的范围为(0~1800),可以考虑枚举做。我们知道在方差公式中有这样一个代换:

sum(Ai-M)^2=sum(Ai^2)-N*M^2

两边同时乘以N后得到:

N*sum(Ai-M)^2=N*sum(Ai^2)- sum(Ai)^2;

所以对于确定的路径长度sum(Ai),应当尽可能使sum(Ai^2)小。
所以我们可以维护dp[i][j][S]这样一个量,表示走到(i,j)这个点,路径长度为S的最小的sum(Ai^2)。
所以转移方程为:

dp[i][j][S]=min( dp[i-1][j][S-mp[i][j]]+mp[i][j]*mp[i][j],
             dp[i][j-1][S-mp[i][j]]+mp[i][j]*mp[i][j] );

要注意可以从上一个状态转移过来的前提条件是上一个状态可达。至此本题可解。

【参考代码】

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;

const int INF=0x3f3f3f3f;
int N,M;
int dp[40][40][1810];
int mp[40][40];

int main()
{
    int T,kase=0;
    cin>>T;
    while(T--)
    {
        cin>>N>>M;
        memset(dp,0x3f,sizeof(dp));
        for( int i=1; i<=N; i++ )
            for( int j=1; j<=M; j++ )
                cin>>mp[i][j];

        dp[1][1][mp[1][1]]=mp[1][1]*mp[1][1];
        for( int i=2; i<=M; i++ )
        {
            for( int S=mp[1][i]; S<=1800; S++ )
                if( dp[1][i-1][S-mp[1][i]]!=INF )
                    dp[1][i][S]=dp[1][i-1][S-mp[1][i]]+mp[1][i]*mp[1][i];
        }
        for( int i=2; i<=N; i++ )
        {
            for( int S=mp[i][1]; S<=1800; S++ )
                if( dp[i-1][1][S-mp[i][1]]!=INF )
                    dp[i][1][S]=dp[i-1][1][S-mp[i][1]]+mp[i][1]*mp[i][1];
        }

        for( int i=2; i<=N; i++ )
            for( int j=2; j<=M; j++ )
            {
                for(  int S=0; S<=1800; S++ )
                {
                    if( dp[i][j-1][S-mp[i][j]]!=INF )dp[i][j][S]=min( dp[i][j][S], dp[i][j-1][S-mp[i][j]]+mp[i][j]*mp[i][j] );
                    if( dp[i-1][j][S-mp[i][j]]!=INF )dp[i][j][S]=min( dp[i][j][S], dp[i-1][j][S-mp[i][j]]+mp[i][j]*mp[i][j] );
                }
            }

        int ans=INF;
        for( int i=0; i<=1800; i++ )
        {
            if( dp[N][M][i]!=INF )
                ans=min( ans, (N+M-1)*dp[N][M][i]-i*i );
        }

        printf("Case #%d: %d\n",++kase,ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值