【C++跬步积累】——时间复杂度

🌏博客主页:PH_modest的博客主页
🚩当前专栏:C++跬步积累
💌其他专栏:
🔴 每日一题
🟡 每日反刍
🟢 读书笔记
🌈座右铭:广积粮,缓称王!

一.算法的复杂度

  • 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度
  • 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

二.时间复杂度的概念

  • 时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个
  • 分析方式:一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。
  • 即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

三.大O的渐进表示法

  1. 用常数1取代运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

四.常见时间复杂度计算举例

1.例一(单循环的时间复杂度)

void Func2(int N)
{
 int count = 0;
 for (int k = 0; k < 2 * N ; ++ k)
 {
 ++count;
 }
 int M = 10;
 while (M--)
 {
 ++count;
 }
 printf("%d\n", count);
}

答案:O(N)

解析:F(N)=2*N+10,根据第三大点的二三小点可知需要将N前的系数和后面的常数去除,即时间复杂度为O(N)

2.例二(循环嵌套的时间复杂度)

void Func3(int N, int M)
{
 int count = 0;
 for (int k = 0; k < M; ++ k)
 {
 ++count;
 }
 for (int k = 0; k < N ; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

答案:O(M+N)

解析:第一个循环执行了M次,第二个循环执行了N次,因此时间复杂度为O(M+N)

3.例三(循环次数为常数的时间复杂度)

void Func4(int N)
{
 int count = 0;
 for (int k = 0; k < 100; ++ k)
 {
 ++count;
 }
 printf("%d\n", count);
}

答案:O(1)

解析:执行的次数是个常数,无论这个常数有多大,时间复杂度都是O(1)

4.例四(冒泡排序的时间复杂度)

void BubbleSort(int* a, int n)
{
 assert(a);
 for (size_t end = n; end > 0; --end)
 {
 int exchange = 0;
 for (size_t i = 1; i < end; ++i)
 {
 if (a[i-1] > a[i])
 {
 Swap(&a[i-1], &a[i]);
 exchange = 1;
 }
 }
 if (exchange == 0)
 break;
 }
}

答案:O(N^2)

解析:在这里插入图片描述

5.例五(二分查找的时间复杂度)

int BinarySearch(int* a, int n, int x)
{
 assert(a);
 int begin = 0;
 int end = n-1;
 // [begin, end]:begin和end是左闭右闭区间,因此有=号
 while (begin <= end)
 {
 int mid = begin + ((end-begin)>>1);
 if (a[mid] < x)
 begin = mid+1;
 else if (a[mid] > x)
 end = mid-1;
 else
 return mid;
 }
 return -1;
}

答案:O(logN),logN表示底数为2,对数为N

解析:在这里插入图片描述

6.例六(普通递归的时间复杂度)

long long Fac(size_t N)
{
 if(0 == N)
 return 1;
 
 return Fac(N-1)*N;
}

答案:O(N)

解析:
在这里插入图片描述
每递归一次,时间复杂度加1,一共递归N次,即时间复杂度为O(N)

7.例七(斐波那契数的时间复杂度)

long long Fib(size_t N)
{
 if(N < 3)
 return 1;
 
 return Fib(N-1) + Fib(N-2);
}

答案:O(2^N)

解析:在这里插入图片描述
每次递归都会是原来的两倍(最后几次除外,最后几次会变成Fib(2)和Fib(1)这两个不会再分裂,但因为时间复杂度是最坏的情况,因此加上这部分并没有太大影响。

最后

遇到无法一眼看出的可以尝试画图,例如最后一个求斐波那契数列的时间复杂度,用肉眼很难看出,但画出图之后就较为简单。

  • 7
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PH_modest

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值