题目:已知裴波那契数列有如下递归定义:f1=1,f2=1,且对n>=3,有fn=fn-1+fn-2,他的前几项可以表示为1,1,2,3,5,8,13,21,34,。。。,问fn的值是否能被3和4整除?
输出:对应每组数据n,如果fn能被3整除,则输出3,能被4整除,则输出4,能被十二整除则输出YES,否则输出NO。
输入样例:
4
6
7
输出样例:
3
4
NO
分析:
这道题数据量很大,直接计算则会溢出,考虑是否有循环节,可得出以下结论:
fn能被3整除,当且仅当n能被4整除;fn能被4整除,当且仅当n能被6整除;fn能被12整除,当且仅当n能被12整除(4和6的最小公倍数);
输出:对应每组数据n,如果fn能被3整除,则输出3,能被4整除,则输出4,能被十二整除则输出YES,否则输出NO。
输入样例:
4
6
7
输出样例:
3
4
NO
分析:
这道题数据量很大,直接计算则会溢出,考虑是否有循环节,可得出以下结论:
fn能被3整除,当且仅当n能被4整除;fn能被4整除,当且仅当n能被6整除;fn能被12整除,当且仅当n能被12整除(4和6的最小公倍数);
代码:
#include<cstdlib>
#include<iostream>
using namespace std;
int main()
{
int n;
while(cin>>n)
{
if(n%12==0)
cout<<"YES"<<endl;
else
{
if(n%4==0)
cout<<"3"<<endl;
else if(n%6==0)
cout<<"4"<<endl;
else
cout<<"NO"<<endl;
}
}
return 0;
}