2017北大数学夏令营第一天第二题的解答

2017北大夏令营,day1,T2


题目

求一切正实数数列 { a k } \{a_k\} {ak},满足 a k 2 = k a k + 1 + 1 a_k^2=ka_{k+1}+1 ak2=kak+1+1,使得存在无限个 k k k,令 a k < 2 k a_k<2^k ak<2k成立。


分析

首先,如果这个递推初始值稍微大一点,就可以忽略常数项,就会产生变成 a 2 k a^{2^k} a2k增长,如果初始值太小,就会直接到后面变成负数,所以很可能只有唯一一个解或者无解,不然只能有无限个解(不太可能)。
  所以猜对初始值非常关键,那么符合题意的初始值可能成为本数列的为数不多的闭合解之一。因为我好久没做题了,所以费了点功夫,如果经常在做函数方程的同学,一下子可以看出闭合解可能是一次多项式,然后就可以猜到答案。再反证明初始值唯一就可以了,使用不等式放缩即可,因为这个递推式对初始值非常敏感,所以不难用不等式导出矛盾。


解答

容易知道 a k = k + 1 a_k=k+1 ak=k+1是一个符合条件的解,下证这是唯一解。
  
  否则 a 1 ≠ 2 a_1\ne 2 a1=2,设 a k = k + 1 + b k , b 1 ≠ 0 a_k=k+1+b_k,b_1\ne 0 ak=k+1+bkb1=0,归纳知 b k ≠ 0 b_k\ne 0 bk=0
  代入有 ( k + 1 + b k ) 2 = 1 + k ( k + 2 + b k + 1 ) (k+1+b_k)^2=1+k(k+2+b_{k+1}) (k+1+bk)2=1+k(k+2+bk+1)
  即 b k + 1 b k = b k k + 2 + 2 k {b_{k+1}\over b_k}={b_k\over k}+2+{2\over k} bkbk+1=kbk+2+k2

a 1 < 2 a_1< 2 a1<2
  则由 a k 2 = k a k + 1 > 1 a_k^2=ka_k+1>1 ak2=kak+1>1知, a k > 1 a_k>1 ak>1,即 − k < b k -k<b_k k<bk
  又由归纳法可知 a k < k + 1 a_k<k+1 ak<k+1,即 b k < 0 b_k<0 bk<0
  故 b k + 1 b k = b k k + 2 + 2 k > 1 + 2 k {b_{k+1}\over b_k}={b_k\over k}+2+{2\over k}>1+{2\over k} bkbk+1=kbk+2+k2>1+k2
  即 b k + 1 b 1 > k + 2 k k + 1 k − 1 . . . 3 1 = ( k + 2 ) ( k + 1 ) 2 {b_{k+1}\over b_1}>{k+2\over k}{k+1\over k-1}...{3\over 1}={(k+2)(k+1)\over 2} b1bk+1>kk+2k1k+1...13=2(k+2)(k+1)
  即 0 < a k + 1 = k + 2 + b k + 1 < ( k + 2 ) ( 1 + k + 1 2 b 1 ) 0<a_{k+1}=k+2+b_{k+1}<(k+2)(1+{k+1\over 2}b_1) 0<ak+1=k+2+bk+1<(k+2)(1+2k+1b1)
  当 k > − 2 b 1 − 1 k>-{2\over b_1}-1 k>b121时,这个不等式不成立,矛盾。
  
  若 a 1 > 2 a_1> 2 a12
  由归纳法可知 a k > k + 1 a_k>k+1 akk+1,即 b k > 0 b_k>0 bk0
  故 b k + 1 b k = b k k + 2 + 2 k > 2 ( 1 + 1 k ) {b_{k+1}\over b_k}={b_k\over k}+2+{2\over k}>2(1+{1\over k}) bkbk+1=kbk+2+k2>21+k1
  即 b k + 1 b 1 > 2 k ( k + 1 ) {b_{k+1}\over b_1}>2^k(k+1) b1bk+1>2k(k+1)
  即 2 k + 1 > a k + 1 = k + 2 + b k + 1 > k 2 k b 1 2^{k+1}>a_{k+1}=k+2+b_{k+1}>k2^kb_1 2k+1>ak+1=k+2+bk+1>k2kb1
  当 k > 2 b 1 k>{2\over b_1} k>b12时,这个不等式不成立,与无限多项成立矛盾。
  
  综上, a 1 = 2 a_1=2 a1=2,归纳知 a k = k + 1 a_k=k+1 ak=k+1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值